ICA  Vol.3 No.3 , August 2012
Observer-Based Nonlinear Feedback Controls for Heartbeat ECG Tracking Systems
Abstract: The analysis and design of observed-based nonlinear control of a heartbeat tracking system is investigated in this paper. Two of Zeeman’s heartbeat models are investigated and modified by adding the control input as a pacemaker, thereby creating the control-affine nonlinear system models that capture the general heartbeat behavior of the human heart. The control objective is to force the output of the heartbeat models to track and generate a synthetic electrocardiogram (ECG) signal based on the actual patient reference data, obtained from the William Beaumont Hospitals, Michigan, and the PhysioNet database. The formulations of the proposed heartbeat tracking control systems consist of two phases: analysis and synthesis. In the analysis phase, nonlinear controls based on input-output feedback linearization are considered. This approach simplifies the difficult task of developing nonlinear controls. In the synthesis phase, observer-based controls are employed, where the unmeasured state variables are estimated for practical implementations. These observer-based nonlinear feedback control schemes may be used as a control strategy in electronic pacemakers. In addition, they could be used in a software-based approach to generate a synthetic ECG signal to assess the effectiveness of diagnostic ECG signal processing devices.
Cite this paper: W. Thanom and R. Loh, "Observer-Based Nonlinear Feedback Controls for Heartbeat ECG Tracking Systems," Intelligent Control and Automation, Vol. 3 No. 3, 2012, pp. 251-261. doi: 10.4236/ica.2012.33029.

[1]   N. Kannathal, C. M. Lim, U. R. Acharya and P. K. Sadasivan, “Cardiac State Diagnosis Using Adaptive NeuroFuzzy Technique,” Medical Engineering & Physics, Vol. 28, No. 8, 2006, pp. 809-815. doi:10.1016/j.medengphy.2005.11.011

[2]   L. Y. Shyu and W. Hu, “Intelligent Hybrid Methods for ECG Classification—A Review,” Journal of Medical and Biological Engineering, Vol. 28, No. 1, 2007, pp. 1-10.

[3]   E. C. Zeeman, “Differential Equations for the Heartbeat and Nerve Impulse,” Towards a Theoretical Biology, Vol. 4, 1972, pp. 8-67.

[4]   L. Glass, “Synchronization and Rhythmic Processes in Physiology,” Nature, Vol. 410, 2001, pp. 277-284. doi:10.1038/35065745

[5]   M. Vassalle, “The Relationship among Cardiac Pacemakers: Overdrive Suppression,” Circulation Research, Vol. 41, No. 3, 1977, pp. 269-277. doi:10.1161/01.RES.41.3.269

[6]   D. S. Jones and B. D. Sleeman, “Differential Equations and Mathematical Biology,” Chapman & Hall/CRC, London, 2003.

[7]   N. Jafarnia-Dabanloo, D. C. McLernon, H. Zhang, A. Ayatollahi and V. Johari-Majd, “A Modified Zeeman Model for Producing HRV Signals and Its Application to ECG Signal Generation,” Journal of Theoretical Biology, Vol. 244, No. 2, 2007, pp. 180-189. doi:10.1016/j.jtbi.2006.08.005

[8]   B. van der Pole and J. van der Mark, “The Heart Beat Considered as a Relaxation-Oscillation and an Electrical Model of the Heart,” Philosophical Magazine Series 7, Vol. 6, No. 38, 1928, pp. 763-775.

[9]   B. J. West, A. L. Goldberger, G. Rovner and V. Bhargava, “Nonlinear Dynamics of the Heartbeat, the AV Junction: Passive Conduit or Active Oscillator?” Physica D: Nonlinear Phenomena, Vol. 17, No. 2, 1985, pp. 198-206. doi:10.1016/0167-2789(85)90004-1

[10]   C. R. Katholi, F. Urthaler, J. Macy Jr. and T. N. James, “A Mathematical Model of Automaticity in the Sinus Node and AV Junction Based on Weakly Coupled Relaxation Oscillators,” Computers and Biomedical Research, Vol. 10, No. 6, 1977, pp. 529-543. doi:10.1016/0010-4809(77)90011-8

[11]   M. G. Signorini, S. Cerutti and D. D. Bernardo, “Simulation of Heartbeat Dynamics: A Nonlinear Model,” International Journal of Bifurcation and Chaos, Vol. 8, No. 8, 1998, pp. 1725-1731. doi:10.1142/S0218127498001418

[12]   D. D. Bernardo, M. G. Signorini and S. Cerutti, “A Model of Two Nonlinear Coupled Oscillators for the Study of Heartbeat Dynamics,” International Journal of Bifurcation and Chaos, Vol. 8, No. 10, 1998, pp. 1975-1985. doi:10.1142/S0218127498001637

[13]   A. M. dos Santos, S. R. Lopes and R. L. Viana, “Rhythm Synchronization and Chaotic Modulation of Coupled van der Pol Oscillators in a Model for the Heartbeat,” Physica A: Statistical Mechanics and Its Applications, Vol. 338, No. 3-4, 2004, pp. 335-355. doi:10.1016/j.physa.2004.02.058

[14]   M. E. Brandt, G. Wang and H. T. Shih, “Feedback Control of a Nonlinear Dual-Oscillator Heartbeat Model,” Bifurcation Control, Vol. 293, 2003, pp. 715-718.

[15]   S. R. F. S. M. Gois and M. A. Savi, “An Analysis of Heart Rhythm Dynamics Using a Three-Coupled Oscillator Model,” Chaos, Solitons and Fractals, Vol. 41, No. 15, 2009, pp. 2553-2565. doi:10.1016/j.chaos.2008.09.040

[16]   P. E. McSharry, G. D. Clifford, L. Tarassenko and L. A. Smith, “A Dynamical Model for Generating Synthetic Electrocardiogram Signals,” IEEE Transactions on Biomedical Engineering, Vol. 50, No. 3, 2003, pp. 289-294. doi:10.1109/TBME.2003.808805

[17]   M. J. Lopez, A. Consegliere, J. Lorenzo and L. Garcia, “Computer Simulation and Method for Heart Rhythm Control Based on ECG Signal Reference Tracking,” WSEAS Transactions on Systems, Vol. 9, No. 3, 2010, pp. 263-272.

[18]   W. Thanom and R. N. K. Loh, “Nonlinear Control of Heartbeat Models,” Journal on Systemics, Cybernetics and Informatics, Vol. 9, No. 1, 2011, pp. 21-27.

[19]   H. K. Khalil, “Nonlinear Systems,” 3rd Edition, Prentice Hall, Upper Saddle River, 2002.

[20]   A. Isidori, “Nonlinear Control Systems,” Springer-Verlag, New York, 1995.

[21]   M. A. Henson and D. E. Seborg, “Nonlinear Process Control,” Prentice Hall, Upper Saddle River, 1997.

[22]   C. I. Byrnes and A. Isidori, “Asymptotic Stabilization of Minimum Phase Nonlinear Systems,” IEEE Transactions on Automatic Control, Vol. 36, No. 10, 1991, pp. 1122-1137. doi:10.1109/9.90226

[23]   G. Ciccarella, M. Dallamora and A. Germani, “A Luenberger-Like Observer for Nonlinear Systems,” International Journal of Control, Vol. 57, No. 3, 1993, pp. 537556. doi:10.1080/00207179308934406

[24]   N. H. Jo and J. H. Seo, “Input Output Linearization Approach to State Observer Design for Nonlinear System,” IEEE Transactions on Automatic Control, Vol. 45, No. 12, 2000, pp. 2388-2393. doi:10.1109/9.895580

[25]   A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. Ch. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C. K. Peng and H. E. Stanley, “PhysioBank, PhysioToolkit, and PhysioNet,” Circulation, Vol. 101, No. 23, 2000, pp. e215-e220. doi:10.1161/01.CIR.101.23.e215