Back
 AJAC  Vol.3 No.8 , August 2012
PMMA Polymer Membrane-Based Single Cylindrical Submicron Pores: Electrical Characterization and Investigation of Their Applicability in Resistive-Pulse Biomolecule Detection
Abstract: Single cylindrical submicron pores in PMMA polymer membranes are micropatterned by electron beam lithography and integrated into all PMMA-based electrophoretic flow detector systems. Pore dimensions are 450 nm in diameter and 1 μm in length. The pores are electrically characterized in aqueous KCl electrolyte, exhibiting a stable time-independent ionic current through the pore with a noise level of less than 1% of the open-pore current. The current-voltage curves are linear and scale with electrolyte concentration. The negative surface charge of the membrane over-proportionally decreases pore conductance at low electrolyte concentrations (≤0.1 M) that are still beyond those typically applied in biological experiments. Pores do not exhibit rectification of current flowing through them, allowing for operation with either polarity. To allow for detection of yet much smaller particles, the described PMMA-based system also was successfully equipped with pores of 1.5 nm instead of 450 nm in diameter. This was achieved by introducing naturally occurring biological protein pores of α-hemolysin on a lipid bilayer into the prepatterned PMMA membrane of an assembled PMMA-based electrophoretic flow detector system. Characteristics of translocation events of single-stranded linear plasmid DNA molecules through the pores were recorded, and ionic current deductions during biomolecule translocation were clear and distinguished. Based on the presented submicron scale open pore ionic current transport properties, as well as the observed passage of DNA molecules through protein pores inserted into PMMA membranes, our current research proposes that all PMMA electrophoretic flow detectors exhibit an excellent potential for future use as biomedical resistive-pulse sensors, as long as pore dimensions match those of biomolecules to be detected.
Cite this paper: S. Achenbach, M. Hashemi, B. Moazed and D. Klymyshyn, "PMMA Polymer Membrane-Based Single Cylindrical Submicron Pores: Electrical Characterization and Investigation of Their Applicability in Resistive-Pulse Biomolecule Detection," American Journal of Analytical Chemistry, Vol. 3 No. 8, 2012, pp. 534-543. doi: 10.4236/ajac.2012.38071.
References

[1]   H. Bayley and P. S. Cremer, “Stochastic Sensors Inspired by Biology,” Nature, Vol. 413, No. 6852, 2001, pp. 226- 230. doi:10.1038/35093038

[2]   H. Bayley and C. R. Martin, “Resistive-Pulse Sensing: from Microbes to Molecules,” Chemical Reviews, Vol. 100, 2000, pp. 2575-2594.

[3]   D. W. Deamer and D. Branton, “Characterization of Nucleic Acids by Nanopore Ananlysis,” Accounts of Chemical Research, Vol. 35, No. 10, 2002, pp. 817-825. doi:10.1021/ar000138m

[4]   Z. Siwy, L. Troffin, P. Kohli, L. A. Baker, C. Trautmann and C. R. Martin, “Protein Biosensors Based on Biofunctionalized Conical Gold Nanotubes,” Journal of the American Chemical Society, Vol. 127, No. 14, 2005, pp. 5000-5001. doi:10.1021/ja043910f

[5]   R. M. M. Smeets, U. F. Keyser, D. Krapf, M. Y. Wu, N. H. Dekker and C. Dekker, “Salt Dependence of Ion Transport and DNA Translocation through Solid-State Nanopores,” NanoLetter, Vol. 6, No. 1, 2006, pp. 89-95. doi:10.1021/nl052107w

[6]   T. Ito, L. Sun and R. M. Crooks, “Simultaneous Determination of the Size and Surface Charge of Individual Nanoparticles Using a Carbon Nanotube-Based Coulter Counter,” Analytical Chemistry, Vol. 75, No. 10, 2003, pp. 2399-2406. doi:10.1021/ac034072v

[7]   J. D. Uram and M. Mayer, “Estimation of Solid Phase Affinity Constants Using Resistive Pulses from Functionalized Nanoparticles,” Biosensors and Bioelectronics, Vol. 22, No. 7, 2007, pp. 1556-1560. doi:10.1016/j.bios.2006.06.020

[8]   S. M. Bezrukov, I. Vodyanoy and V. A. Parsegian, “Counting Polymers Moving through a SingleIon Channel,” Nature, Vol. 370, No. 6487, 1994, pp. 279-28. doi:10.1038/370279a0

[9]   S. M. Bezrukov, “Ion Channels as Molecular Coulter Counters to Probe Metabolite Transport,” Journal of Membrane Biology, Vol. 174, No. 1, 2000, pp. 1-13. doi:10.1007/s002320001026

[10]   J. Schmidt, “Stochastic Sensors,” Journal of Materials Chemistry, Vol. 15, No. 8, 2005, pp. 831-840. doi:10.1039/b414551h

[11]   M. Mayer, J. K. Kriebel, M. T. Tosteson and G. M. Whitesides, “Microfabricated Teflon Membranes for Low-Noise Recordings of Ion Channels in Pla-nar Lipid Bilayers,” Biophysical Journal, Vol. 85, No. 4, 2003, pp. 2684-2695. doi:10.1016/S0006-3495(03)74691-8

[12]   A. Mara, Z. Siwy, C. Trautmann, J. Wan and F. Kamme, “An Asymmetric Polymer Nanopore for Single Molecule Detection,” NanoLetters, Vol. 4, No. 3, 2004, pp. 497- 501. doi:10.1021/nl035141o

[13]   J. Li, D. Stein, C. McMullan, D. Branton, M. J. Aziz and J. A. Golovchenko, “Ion Beam Sculpting at Nanometer Length Scales,” Nature, Vol. 412, 2001, pp. 166-169. doi:10.1038/35084037

[14]   A. J. Storm, J. H. Chen, X. S. Ling, H. W. Zandbergen and C. Dekker, “Fabrication of Solid-State Nanopores with Single-Nanometer Precision,” Nature Materials, Vol. 2, 2003, pp. 537-540. doi:10.1038/nmat941

[15]   A. J. Storm, J. H. Chen, H. W. Zandbergen and C. Dekker, “Trans-location of Double-Strand DNA through a Silicon Oxide Nanopore,” Physical Review, Vol. E71, No. 1, 2005, pp. 051903-051908.

[16]   H. Shadpour, H. Musyimi, J. Chen and S. A. Soper, “Physicochemical Properties of Various Polymer Substrates and Their Effects on Microchip Electrophoresis Performance,” Journal of Chromatography A, Vol. 1111, No. 2, 2006, pp. 238-251. doi:10.1016/j.chroma.2005.08.083

[17]   H. Bi, S. Meng, Y. Li, K. Gao, Y. Chen, J. Kong, P. Yang, W. Zhong and B. Liu, “Deposition of PEG onto PMMA Microchannel Surface to Minimize Nanospecific Adsorption,” Lab on a Chip, No. 6, 2006, pp. 769-775. doi:10.1039/b600326e

[18]   Z. Siwy, P. Apel, D. Dobrev, R. Neumann, R. Spohr, C. Trautmann and K. Voss, “Ion Transport through Asymmetric Nanopores Prepared by Ion Track Etching,” Nuclear Instruments and Methods in Physics Research Section B, Vol. 208, 2003, pp. 143-148. doi:10.1016/S0168-583X(03)00884-X

[19]   D. Belder and M. Ludwig, “Surface Modification in Microchip Electrophoresis,” Electrophoresis, Vol. 24, No. 21, 2003, pp. 3595-3606. doi:10.1002/elps.200305648

[20]   T. Mappes, S. Achenbach and J. Mohr, “Hochaufl?sende R?ntgenlithografie zur Herstellung polymerer Submikrometerstukturen mit groβem Aspektverh?ltnis,” Ph.D. Thesis, University of Karlsruhe, FZKA7215, 2006.

[21]   M. Hashemi, S. Achenbach, D. Klymyshyn, B. Moazed and J. Lee, “Design and Microfabrication of a Polymer Membrane-Based Submicron Scale Electrophoretic Flow Detector for Biomedical Applica-tions,” Microsystem Te- chnology, Vol. 16, No. 8, 2009, pp. 1563-1567. doi:10.1007/s00542-009-1002-3

[22]   J. S. Bae, S. C. Oh, J. E. Nam, J. K. Lee and H. J. Lee, “A tensile test technique for the freestanding PMMA thin films,” Current Applied Physics, Vol. 9, No. 1, 2009, pp. 107-109. doi:10.1016/j.cap.2008.08.029

[23]   R. Stefureac, Y. T. Long, H. B. Kraatz, P. Howard and J. S. Lee, “Transport of α-Helical Peptides through α-He-molysin and Aerolysin Pores,” Bio-chemistry, Vol. 45, No. 30, 2006, pp. 9172-9179. doi:10.1021/bi0604835

[24]   S. Wu, S. R. Park and X. S. Ling, “Lithography-Free Formation of Nanopores in Plastic Mem-branes Using Laser Heating,” NanoLetters, Vol. 6, No. 11, 2006, pp. 2571-2576. doi:10.1021/nl0619498

[25]   R. W. Deblois and C. P. Bean, “Counting and Sizing of Submicron Particles by the Resistive Pulse Technique,” Review of Scientific Instruments, Vol. 41, No. 7, 1970, pp. 909-915. doi:10.1063/1.1684724

[26]   C. Dekker, “Solid-State Nano-Pores,” Nature, Vol. 2, 2007, pp. 209-215.

[27]   C. Ho, R. Qiao, J. B. Heng, A. Chatterjee, R. J. Timp, N. R. Aluru and G. Timp, “Electrolytic Transport through a Synthetic Nanome-ter-Diameter Pore,” PNAS, Vol. 102, No. 30, 2005, pp. 10445-10450. doi:10.1073/pnas.0500796102

[28]   L. Petrossian, S. J. Wilk, P. Joshi, S. Hihath, S. M. Goodnick and T. J. Thornton, “Fabrication of Cylindrical Nanopores and Nanopore Arrays in Sili-con-on-Insulator Substrates,” Journal of Microelectromechanical Systems, Vol. 16, No. 6, 2007, pp. 1419- 1428. doi:10.1109/JMEMS.2007.908435

[29]   B. Schiedt, K. Healy, A. P. Morrison, R. Neumann and Z. Siwy, “Transport of Ions and Biomolecules through Single Asymmetric Nanopores in Polymer Films,” Nu- clear Instruments and Methods in Physics Research Section B, Vol. 236, 2005, pp. 109-116.

[30]   Y. Choi, L. A. Baker, H. Hillebrenner and C. R. Martin, “Biosensing with Conically Shaped Nano-Pores and Nanotubes,”Physical Chemistry Chemical Physics, Vol. 8, No. 43, 2006, pp. 4976-4988. doi:10.1039/b607360c

[31]   L. T. Sexton, L. P. Horne and C. R. Martin, “Developing Synthetic Conical Nanopores for Biosensing Applications,” Molecular BioSystems, Vol. 3, No. 10, 2007, pp. 667-685. doi:10.1039/b708725j

[32]   Z. Siwy, Y. Gu, H. Spohr, D. Baur, A. Wolf-Reber, R. Spohr, P. Apel and Y. E. Korchev, “Rectification and Voltage Gating of Ion Currents in a Nanofabricated Pore,” Europhysics Letters, Vol. 60, No. 3, 2002, pp. 349-355. doi:10.1209/epl/i2002-00271-3

[33]   J. M. Goddard and J. H. Hotchkiss, “Polymer Surface Modification for the Attachment of Bioactive Compounds,” Progress in Polymer Science, Vol. 32, No. 7, 2007, pp. 698-725. doi:10.1016/j.progpolymsci.2007.04.002

[34]   J. Liu and M. L. Lee, “Permanent Surface Modification of Polymeric Capillary Electrophoresis Microchips for Protein and Peptide Analysis,” Electrophoresis, Vol. 27, No. 18, 2006, pp. 3533-3546. doi:10.1002/elps.200600082

 
 
Top