ABB  Vol.3 No.4 A , August 2012
Intra-articular injection of xanthan gum: A potential therapy for osteoarthritis
ABSTRACT
Osteoarthritis (OA) means inflammation of the joints, with the symptoms of joint pain, stiffness, and swelling of the joints. It is a degenerative disease that appears to be caused by both biomechanical and bio-chemical factors. Intra-articular (IA) injection treatment is one of the main treatment methods for OA because of its positive effect in reducing joint pain and increasing joint mobility. IA injection of xanthan gum (XG) could protect the joint cartilage, relieve the synovitis and reduce the OA progression in experiment OA. The injection of XG may have a long-lasting effect in the joint cavity, which could avoid frequent IA injections. However, for the development of this potential therapy, further studies such as the effective long-term pain relief properties, the detailed action mechanism and the pharmacokinetics of the XG injection will be conducted. This article briefly reviewed the preparation, safety evaluation, pharmacodynamics and possible action mechanism of XG injection, and come up with the ideas for further development of this potential therapy for OA.

Cite this paper
Shao, H. , Han, G. , Ling, P. , Zhu, X. , Liu, F. , Jin, Y. , Zhao, L. and Zhang, T. (2012) Intra-articular injection of xanthan gum: A potential therapy for osteoarthritis. Advances in Bioscience and Biotechnology, 3, 449-453. doi: 10.4236/abb.2012.324063.
References
[1]   Woolf, A.D. and Pfleger, B. (2003) Burden of major musculoskeletal conditions. Bull World Health Organ, 81, 646-656.

[2]   Scanzello, C.R. and Goldring, S.R. (2012) The role of synovitis in osteoarthritis pathogenesis.Bone, 51, 249-257. doi:10.1016/j.bone.2012.02.012

[3]   Sharma, L., Kapoor, D. and Issa, S. (2006) Epidemiology of osteoarthritis: an update. Current Opinion in Rheumatology, 18, 147-156. doi:10.1097/01.bor.0000209426.84775.f8

[4]   Felson, D.T., et al. (1988) Obesity and knee osteoarthritis. The Framingham Study. Annals of Internal Medicine, 109, 18-24.

[5]   American College of Rheumatology Subcommittee on Osteoarthritis Guidelines. (2000). Recommendations for the medial management of osteoarthritis of the hip and knee. Arthritis & Rheumatism-Aarthritis Care & Research, 43, 1905-1915.

[6]   Jackson, D.W. and Simon, T. M. (2006) Intra-articular distribution and residence time of Hylan A and B: a study in the goat knee. Osteoarthritis and Cartilage, 14, 1248-1257. doi: 10.1016/j.joca.2006.05.015

[7]   Boettger, M.K., et al. (2011) Evaluation of long-term antinociceptive properties of stabilized hyaluronic acid preparation (NASHA) in an animal model of repetitive joint pain. Arthritis Research and Therapy, 13, R110. doi:10.1186/ar3394

[8]   Mihara, M., et al. (2007) Different effects of high molecular weight sodium hyaluronate and NSAID on the progression of the cartilage degeneration in rabbit OA model. Osteoarthritis and Cartilage, 15, 543-549. doi:10.1016/j.joca.2006.11.001

[9]   Bannuru, R.R., et al. (2011) Therapeutic trajectory following intra-articular hyaluronic acid injection in knee osteoarthritis-meta-analysis. Osteoarthritis andCartilage, 19, 611-619. doi:10.1016/j.joca.2010.09.014

[10]   Balazs, E. (1982) The physical properties of synovial fluid and the specific role of hyaluronic acid. In: Helfet,A.J. Ed.Disorders of the Knee. Philadelphia: JB Lippincott, 61-74.

[11]   Puh, W., et al. (1993) Intra-articular sodium hyaluronate in osteoarthritis of the knee: a multicenter, double-blinded study. Osteoarthritis and Cartilage, 1, 233-241. doi:10.1016/S1063-4584(05)80329-2

[12]   Gomis, A., et al. (2009) Intra-articular injections of hyaluronan solutions of different elastoviscosity reduce nociceptive nerve activity in a model of osteoarthritic knee joint of the guinea pig. Osteoarthritis Cartilage, 17, 798-804. doi:10.1016/j.joca.2008.11.013

[13]   Barbucci, R., et al. (2002) Hyaluronic acid hydrogel in the treatment of osteoarthritis. Biomaterials, 23, 4503-4513. doi:10.1016/S0142-9612(02)00194-1

[14]   Garcia-Ochoa, F., et al. (2000) Xanthan gum: production, recovery, and properties.Biotechnology Advances, 18,549-579.doi:10.1016/S0734-9750(00)00050-1

[15]   García-Abuín, A., et al. (2011) Viscosimetric behaviour of hyaluronic acid in different aqueous solutions. Carbohydrate Polymers, 85, 500-505. doi:10.1016/j.carbpol.2011.02.028

[16]   Bewersdorff, H.W. and Singh, R.P. (1988) Rheological and drag reduction characteristics of xanthan gum solutions. Rheologica Acta, 27, 617-627. doi:10.1007/BF01337457

[17]   Han, G.Y., et al. (2012) Preparation of xanthan gum injection and its protective effect on articular cartilage in the development of osteoarthritis. Carbohydrate Polymers, 87, 1837-1842. doi:10.1016/j.carbpol.2011.10.016

[18]   Cadmus, M. C., et al. (1976) Colonial variation in Xanthomonas campestris NRRL B-1459 and characterization of the polysaccharide from a variant strain. Canadian Journal of Microbiology, 22, 942–948. doi:10.1139/m76-136

[19]   Jansson, P. E., Kenne, L. and Lindberg, B. (1975) Structure of the extracellular polysaccharide from Xanthomonas campestris. Carbohydrate Research, 45, 275–282. doi:10.1016/S0008-6215(00)85885-1

[20]   Kennedy, J.F. and Bradshaw, I.J. (1984) Production, properties and applications of xanthan. Progress in Industrial Microbiology, 19, 319–371.

[21]   Ceulemans, J., Vinckier, I. and Ludwig, A. (2002) The use of xanthan gum in an ophthalmic liquid dosage form: rheological characterization of the interaction with mucin. Journal of Pharmaceutical Sciences, 1, 1117-1127. doi:10.1002/jps.10106

[22]   Harward, I., Schenker, M.D. and Lewis, H. (2000) Long-term intraocular pressure-lowering efficacy and safety of timolol maleate. American Journal of Ophthalmology, 130, 145–150.

[23]   Baroud, G., et al. (2004) Injection biomechanics of bone cements used in vertebroplasty. Bio-Medical Materials and Engineering, 14, 487–504.

[24]   Talukdar, M. M., et al. (1996) Comparative study on xanthan gum and hydroxypropylmethyl cellulose as matrices for controlled-release drug delivery I. Compaction and in vitro drug release behaviour. International Journal of Pharmaceutics, 129, 233–241. doi:10.1016/0378-5173(95)04355-1

[25]   Mikac, U., et al. (2010) A new approach combining different MRI methods to provide detailed view on swelling dynamics of xanthan tablets influencing drug release at different pH and ionic strength. Journal of of Controlled Release, 145, 247-256. doi:10.1016/j.jconrel.2010.04.018

[26]   Chen, H. B., et al. (2006) Microemulsion-based hydrogel ormulation of ibuprofen for topical delivery. Journal of Biomedical Materials Research, 315, 52-58.

[27]   Chellat, F., et al. (2000) Study of biodegradation behavior of chitosan–xanthan microspheres in simulated physiological media. Journal of Biomedical Materials Research, 53, 592-599. doi:10.1002/1097-4636(200009)53:5<592::AID-JBM20>3.0.CO;2-P

[28]   Nakamura, F., et al. (1996) In vitro and in vivo nasal mucoadhesion of some water-soluble polymers. International Journal of Pharmaceutics, 134, 173-181. doi:10.1016/0378-5173(95)04416-7

[29]   Chiou, C. J., Tseng, L. P. and Deng, M.C. (2009) Mucoadhesive liposomes for intranasal immunization with an avian influenza virus vaccine in chickens. Biomaterials, 30, 5862-5868. doi:10.1016/j.biomaterials.2009.06.046

[30]   Takeuchi, A., et al. (2009) Oral administration of xanthan gum enhances antitumor activity through Toll-like receptor 4. International Immunopharmacology, 9, 1562-1567. doi:10.1016/j.intimp.2009.09.012

[31]   Matthews, K. H., et al. (2005) Lyophilised wafers as a drug delivery system for wound healing containing methylcellulose as a viscosity modifier. International Journal of Pharmaceutics, 289, 51–62. doi:10.1016/j.ijpharm.2004.10.022

[32]   Salah, R.B., et al. (2010) Optimisation of xanthan gum production by palm date (Phoenix dactylifera L.) juice byproducts using response surface methodology. Food Chemistry, 121, 627-633. doi:10.1016/j.foodchem.2009.12.077

[33]   Han, G.Y., et al. (2012) Safety evaluation of intra-articular injection of xanthan gum into knee joint of rabbit. Chinese Journal of Biochemical Pharmaceuticals, 33, 109-111.

[34]   Han, G.Y., et al. (2012) The protective effect of xanthan gum on interleukin-1β induced rabbit chondrocytes. Carbohydrate Polymers (in press). doi:10.1016/j.carbpol.2012.04.023

[35]   Steven, B. and Abramson, M.D. (2008) Osteoarthritis and nitric oxide. Osteoarthritis and Cartilage, 16, 15–20. doi:10.1016/S1063-4584(08)60008-4

[36]   Goldring, M.B. and Goldring, S.R. (2007) Osteoarthritis. Journal of Physiology-Cell Physiology, 213, 626-634. doi:10.1002/jcp.21258

[37]   Bonnet, C.S. and Walsh, D.A. (2005) Osteoarthritis, angiogenesis and inflammation. Rheumatology, 44, 7–16. doi:10.1093/rheumatology/keh344

[38]   Sofat, N., Ejindu, V. and Kiely, P. (2011) What makes osteoarthritis painful? The evidence for local and central pain processing.Rheumatology,50:2157-2165. doi:10.1093/rheumatology/ker283

[39]   Chowdhury, T.T., Bader, D.L. and Lee, D.A. (2006) Anti-inflammatory effects of IL-4 and dynamic compression in IL-1beta stimulated chondrocytes. Biochemical and Biophysical Research Communications, 339, 241–247.doi:10.1016/j.bbrc.2005.11.016

[40]   Aida, Y., et al. (2005) The effect of IL-1beta on the expression of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in human chondrocytes. Life Sciences, 77, 3210–3221. doi:10.1016/j.lfs.2005.05.052

[41]   Burrage, P.S., Mix, K.S. and Brinckerhoff, C.E. (2006) Matrix metalloproteinases: role in arthritis, Front. Bioscience, 11, 529–543. doi:10.2741/1817

[42]   McDougall, J.J., Watkins, L. and Li, Z. (2006) Vasoactive intestinal peptide (VIP) is a modulator of joint pain in a rat model of osteoarthritis.Pain, 123, 98–105. doi:10.1016/j.pain.2006.02.015

 
 
Top