ABB  Vol.3 No.4 , August 2012
Genomics of crop plant genetic resources
Plant genetic resources collection and utilization had made a huge impact in balancing the genetic diversity of the existing crop plant species and their application in genome based studies had also increased widely. Primarily studies were based on model species, although it now enhances the transferability of information to crops and related species. With the tremendous outbreak of new high-throughput technologies like next-generation sequencing (NGS) and reduction in their costs are bringing many more plants within the range of genome and transcriptome level analysis. The completion of reference genome sequences for many important crops and the ability to perform high-throughput resequencing are providing opportunities for improving our understanding of the crop plant genetic resources to accelerate crop improvement. The future of crop improvement will be centred on comparisons of individual crop plant genomes, and some of the best opportunities may lie in using combinations of new genetic mapping strategies and evolutionary analyses to direct and optimize the discovery and use of genetic variation. Here I review the importance of crop plant genetic resources and insights that have been emerged in recent years.

Cite this paper
nullDhanapal, A. (2012) Genomics of crop plant genetic resources. Advances in Bioscience and Biotechnology, 3, 378-385. doi: 10.4236/abb.2012.34054.
[1]   Borner, A. (2006) Preservation of plant genetic resources in the biotechnology era. Biotechnology Journal, 1, 1393- 1404. doi:10.1002/biot.200600131

[2]   Porceddu, E. (1999) Agricultural production and natural resources. In: Scarascia Mugnozza, G.T. et al., Eds., Genetics and breeding for quality and resistance, Kluwer Academic Publishers, Amsterdam, 377-396.

[3]   Monti, L. and Carputo, D. (2006) Genetic resources and genomics: Two sides of the same coin. Proceedings of the 50th Italian Society of Agricultural Genetics Annual Congress, Ischia, 10-14 September 2006.

[4]   Metzker, M. (2010) Sequencing technologies—The next generation. Nature Review Genetics, 11, 31-46. doi:10.1038/nrg2626

[5]   Edwards, D. and Batley, J. (2010) Plant genome sequencing: applications for crop improvement. Plant Biotechnology Journal, 8, 2–9. doi:10.1111/j.1467-7652.2009.00459.x

[6]   Jackson, S., Iwata, A., Lee, S., Schmutz, J. and Shoemaker, R. (2011) Sequencing crop genomes: Approaches and applications. New Phytologist, 191, 915-925. doi:10.1111/j.1469-8137.2011.03804.x

[7]   Hoisington, D., Khairallah, M., Reeves, T., Ribaut, J.M., Skovmand, B., Taba, S. and Warburtan, M. (1999) Plant genetic resources: What can they contribute toward increased crop productivity? Proceedings of the National Academy of Sciences of the USA, 96, 5937-5943. doi:10.1073/pnas.96.11.5937

[8]   Esquinas-Alcázar, J. (2005) Science and society: Protecting crop genetic diversity for food security: Political, ethical and technical challenges. Nature Review Genetics, 6, 946-953. doi:10.1038/nrg1729

[9]   Hodgkin, T., Roviglioni, R., De Vicente, M.C., Dudnik, N. (2001) Molecular methods in the conservation and use of plant genetic resources. Acta Horticultura, 546, 107- 118.

[10]   Collard, B.C.Y., Jahufer, M.Z.Z., Brouwer, J.B. and Pang, E.C.K. (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica, 142, 169-196. doi:10.1007/s10681-005-1681-5

[11]   Spooner, D., van Treuren, R. and de Vicente, M.C. (2005) Molecular markers for genebank management. IPGRI Technical Bulletin No. 10, International Plant Genetic Resources Institute, Rome.

[12]   Weising, K., Nybom, H., Wolff, K. and Kahl, G. (2005) DNA fingerprinting in plants: Principles, methods, and applications. CRC Press, Boca Raton. doi:10.1201/9781420040043

[13]   Yu, S.B., Xu, W.J., Vijayakumar, C.H.M., Ali, J., Fu, B.Y., Xu, J.L., Jiang Y.Z., Marghirang, R., Domingo, R., Aquino, C., Virmani, S.S. and Li, Z.K. (2003) Molecular diversity and multilocus organization of the parental lines used in the International Rice Molecular Breeding Program. Theoretical and Applied Genetics, 108, 131-140. doi:10.1007/s00122-003-1400-3

[14]   Rao, N.K., Reddy, L.J., Bramel, P. (2003) Potential of wild species for genetic enhancement of some semi-arid food crops. Genetic Resources and Crop Evolution, 50, 707-721. doi:10.1023/A:1025055018954

[15]   Zimnoch-Guzowska, E., Lebecka, R., Kryszczuk, A., Maciejewska, U., Szczerbakowa, A. and Wielgat, B. (2003) Resistance to Phytophthora infestens in somatic hybrids of Solanum nigrum L. and diploid potato. Theoretical and Applied Genetics, 107, 43-48.

[16]   Tuberosa, R., Gill, B.S. and Quarrie, S.A. (2002) Cereal genomics: Ushering in a brave new world. Plant Molecular Biology, 48, 445-449. doi:10.1023/A:1014818417927

[17]   Varshney, R.K., Graner, A. and Sorrells, M.E. (2005) Genomics-assisted breeding for crop improvement. Trends in Plant Science, 10, 621-630. doi:10.1016/j.tplants.2005.10.004

[18]   Varshney, R.K., Hoisington, D.A. and Tyagi, A.K. (2006) Advances in cereal genomics and applications in crop breeding. Trends in Biotechnology, 24, 490-499.

[19]   Ersoz, E.S. (2007) Applications of linkage disequilibrium and association mapping in crop plants. In: Varshney, R.K. and Tuberosa, R.T., Eds., Genomics assisted crop improvement: Genomics approaches and platforms. Springer, Berlin, 97-120.

[20]   Schena, M. (1998) Microarrays: Biotechnology’S discovery platform for functional genomics. Trends in Biotechnology, 16, 301-306. doi:10.1016/S0167-7799(98)01219-0

[21]   Jansen, R.C. and Nap, J.P. (2001) Genetical genomics: The added value from segregation. Trends in Genetics, 17, 388-391. doi:10.1016/S0168-9525(01)02310-1

[22]   Till, B.J. (2007) TILLING and EcoTILLING for crop improvement. In: Varshney, R.K. and Tuberosa, R.T., Eds., Genomics assisted crop improvement: Genomics approaches and platforms. Springer, Berlin, 333-349.

[23]   Naylor, R.L., Falcon, W.P., Goodman, R.M., Jahn, M.M., Sengooba, T., Tefera, H. and Nelson, R.J. (2004) Bio- technology in the developing world: A case for increased investments in orphan crops. Food Policy, 29, 15-44. doi:10.1016/j.foodpol.2004.01.002

[24]   Morrell, P., Buckler, E., Ross-Ibarra, J. (2011) Crop genomics: Advances and applications. Nature Review Genetics, 13, 85-96.

[25]   Fredslund, J., Madsen, L.H., Hougaard, B.K., Nielsen, A.M., Bertioli, D., Sandal, N., Stougaard, J. and Schauser, L. (2006) A general pipeline for the development of anchor markers for comparative genomics in plants. BMC Genomics, 14, 207. doi:10.1186/1471-2164-7-207

[26]   Paterson, A.H. (2006) Leafing through the genomes of our major crop plants: Strategies for capturing unique information. Nature Review Genetics, 7, 174-184. doi:10.1038/nrg1806

[27]   Boffelli, D., Weer, C.V., Weng, L., Lewis, K.D., Shoukry, M.I., Pachter, L., Keys D.N. and Rubin E.M. (2004) Intraspecies sequence comparisons for annotating genomes. Genome Research, 14, 2406-2411. doi:10.1101/gr.3199704

[28]   Devos, K.M. (2005) Updating the “crop circle”. Current Opinion in Plant Biology, 8, 155-162. doi:10.1016/j.pbi.2005.01.005

[29]   Nelson, R.J., Naylor, R.L. and Jahn, M.M. (2004) The role of genomics research in improvement of “orphan” crops. Crop Science, 44, 1901-1904. doi:10.2135/cropsci2004.1901

[30]   Salentijn, E.M.J., Pereira, A., Angenent, G.C., van der Linden, C.G., Krens, F., Smulders, M.J.M. and Vosman, B. (2007) Plant translational genomics: From model species to crops. Molecular Breeding, 20, 1-13. doi:10.1007/s11032-006-9069-3

[31]   Caicedo, A.L. and Purugganan, M.D. (2005) Comparative plant genomics. Frontiers and prospects. Plant Physiology, 2, 545-547. doi:10.1104/pp.104.900148

[32]   Gutterson, N. and Zhang, J.Z. (2004) Genomics applications to biotech traits: A revolution in progress? Current Opinion in Plant Biology, 7, 226-230. doi:10.1016/j.pbi.2003.12.002

[33]   Laurie, D.A., Griffiths, S., Dunford, R.P., Christodoulou, V., Taylor, S.A., Cockram, J., Beales, J. and Turner, A. (2004) Comparative genetic approaches to the identification of flowering time genes in temperate cereals. Field Crops Research, 90, 87-99. doi:10.1016/j.fcr.2004.07.007

[34]   Bouchard, C. and Ordovas, J.M. (2012) Fundamentals of nutrigenetics and nutrigenomics. Progress in Molecular Biology and Translational Science, 108, 1-15.

[35]   Parnell, L.D. (2012) Advances in technologies and study design. Progress in Molecular Biology and Translational Science, 108, 17-50.

[36]   Atanassov, A., Batchvarova, R. and Djilianov, D. (2007) Strategic vision for plant biotechnology and genomics development. Biotechnology and Biotechnological Equipment, 21, 1-7.

[37]   Varshney, R.K., Nayak, S.N., May, G.D. and Jackson, S.A. (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends in Biotechnology, 9, 522-530. doi:10.1016/j.tibtech.2009.05.006

[38]   Cao, J., Schneeberger, K., Ossowski, S., Günther, T., Bender, S., Fitz, J., Koenig, D., Lanz, C., Stegle, O., Lippert, C., Wang, X., Ott, F., Müller, J., Alonso-Blanco, C., Borg-wardt, K., Schmid, K.J. and Weigel, D. (2011) Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nature Genetics, 43, 956-965. doi:10.1038/ng.911

[39]   Hu, T.T., Pattyn, P., Bakker, E.G., Cao, J., Cheng, J.F., Clark, R.M. (2011) Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nature Genetics, 43, 476-481. doi:10.1038/ng.807

[40]   Al-Dous, E.K., George, B., Al-Mahmoud, M.E., Al-Jaber, M.Y., Wang, H., Salameh, Y.M., Al-Azwani, E.K., Chaluvadi, S., Pontaroli, A.C., Debarry, J., Arondel, V., Ohl-rogge, J., Saie, I.J., Suliman-Elmeer, K.M., Bennetzen, J.L., Kruegger, R.R. and Malek, J.A. (2011) De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera). Nature Biotechnology, 29, 521-527. doi:10.1038/nbt.1860

[41]   Argout, X., et al. (2011) The genome of Theobroma cacao. Nature Genetics, 43, 101-108. doi:10.1038/ng.736

[42]   Banks, J.A., et al. (2011) The selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science, 332, 960-963. doi:10.1126/science.1203810

[43]   Chan, A.P., et al. (2010) Draft genome sequence of the oil-seed species Ricinus communis. Nature Biotechnology, 28, 951-956. doi:10.1038/nbt.1674

[44]   Dassanayake, M., et al. (2011) The genome of the extre- mophile crucifer Thellungiella parvula. Nature Genetics, 43, 913-918. doi:10.1038/ng.889

[45]   Goff, S.A., et al. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science, 296, 92- 100. doi:10.1126/science.1068275

[46]   Huang, S. (2009) The genome of the cucumber, Cucumis sativus L. Nature Genetics, 12, 1275-1283. doi:10.1038/ng.475

[47]   Initiative, I.B., et al. (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature Biotechnology, 463, 763-768.

[48]   Arabidopsis thaliana Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature Biotechnology, 408, 796-815.

[49]   Jaillon, O., et al. (2007) Characterization French-Italian Public Consortium for Grapevine Genome Characterization. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature Biotechnology, 449, 463-467.

[50]   Ming, R., et al. (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature Letters, 24, 991-997. doi:10.1038/nature06856

[51]   Rensing, S.A., et al. (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science, 319, 64-69. doi:10.1126/science.1150646

[52]   Sato, S., et al. (2008) Genome structure of the legume, Lotus japonicus. Genome structure of the legume, Lotus japonicus. DNA Research, 15, 227-239. doi:10.1093/dnares/dsn008

[53]   Schmutz, J., et al. (2010) Genome sequence of the pa- laeopolyploid soybean. Nature, 463, 178-183. doi:10.1038/nature08670

[54]   Schnable, P.S., et al. (2009) The B73 maize genome: Complexity, diversity, and dynamics. Science, 326, 1112. doi:10.1126/science.1178534

[55]   Shulaev, V., et al. (2011) The genome of woodland straw- berry (Fragaria vesca). Nature Genetics, 43, 109-116. doi:10.1038/ng.740

[56]   Tuskan, G.A., et al. (2006) The genome of black cotton-wood, Populus trichocarpa (Torr. & Gray). Science, 313, 1596-1604. doi:10.1126/science.1128691

[57]   van Bakel, H., Stout, J.M., Cote, A.G., Tallon, C.M., Sharpe, A.G., Hughes, T.R. and Page, J.E. (2011) The draft genome and transcriptome of Cannabis sativa. Genome Biology, 12, 102. doi:10.1186/gb-2011-12-10-r102

[58]   Varshney, R.K., et al. (2011) Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nature Biotechnology, 30, 83-89. doi:10.1038/nbt.2022

[59]   Velasco, R., et al. (2010) The genome of the domestic- cated apple (Malus × domestica Borkh.). Nature Genetics, 42, 833-839. doi:10.1038/ng.654

[60]   Wang, X., et al. (2011) The genome of the mesopolyploid crop species Brassica rapa. Nature Genetics, 43, 1035-1039. doi:10.1038/ng.919

[61]   Wóycicki, R., et al. (2011) The genome sequence of the North-European cucumber (Cucumis sativus L.) unravels evolutionary adaptation mechanisms in plants. PLoS ONE, 6, 7.

[62]   Young, N.D., et al. (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature, 480, 520-524.

[63]   Yu, J., (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science, 296, 79-92. doi:10.1126/science.1068037

[64]   The Potato Genome Sequencing Consortium (2011) Ge- nome sequence and analysis of the tuber crop potato. Nature, 475, 189-195. doi:10.1038/nature10158

[65]   Sanger, F., Nicklen, S. and Coulson, A.R. (1997) DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the USA, 74, 5463-5467. doi:10.1073/pnas.74.12.5463

[66]   Service, R.F. (2006) Gene sequencing: The race for the $1000 genome. Science, 311, 1544-1546. doi:10.1126/science.311.5767.1544

[67]   Kling, J. (2005) The search for sequencing thoroughbred. Nature Biotechnology, 23, 1333-1335. doi:10.1038/nbt1105-1333

[68]   Mardis, E. (2008) The impact of next-generation sequence- ing technology on genetics. Trends in Genetics, 24, 133- 141. doi:10.1016/j.tig.2007.12.007

[69]   Mardis, E.R. (2010) The $1000 genome, the $100,000 analysis? Genome Medicine, 2, 84. doi:10.1186/gm205

[70]   Birney, E., et al. (2004) An overview of Ensembl. Genome Research, 14, 925-958. doi:10.1101/gr.1860604

[71]   Chen, Y., et al. (2010) Ensembl variation resources. BMC Genomics, 11, 293. doi:10.1186/1471-2164-11-293

[72]   Kinsella, R.J., et al. (2011) Ensembl BioMarts: A hub for data retrieval across taxonomic space Database (Oxford). doi:10.1093/database/bar030

[73]   Dreszer, T.R., et al. (2012) The UCSC genome browser database: Extensions and updates 2011. Nucleic Acids Research, 40, 18-23. doi:10.1093/nar/gkr1055

[74]   Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J. and Wheeler, D.L. (2006) Genbank. Nucleic Acids Research, 34, 16-20. doi:10.1093/nar/gkj157

[75]   Ohyanagi, H., et al. (2006) The rice annotation project database (rap-db): Hub for Oryza sativa ssp. japonica genome information. Nucleic Acids Research, 34, 741- 744. doi:10.1093/nar/gkj094

[76]   Cochrane, G., et al. (2006) EMBL nucleotide sequence database: Developments in 2005. Nucleic Acids Research, 34, 10-15. doi:10.1093/nar/gkj130

[77]   Goecks, J., Nekrutenko, A., Taylor, J. and Galaxy Team (2010) The Galaxy: A comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biology, 11, 86. doi:10.1186/gb-2010-11-8-r86

[78]   Hsi-Yang, Fritz, M., Leinonen, R., Cochrane, G. and Bir- ney, E. (2011) Efficient storage of high throughput DNA sequencing data using reference-based compression. Genome Research, 21, 734-40. doi:10.1101/gr.114819.110

[79]   Schatz, M., Langmead, B. and Salzberg, S. (2010) Cloud computing and the DNA data race. Nature Biotechnology, 28, 691-693. doi:10.1038/nbt0710-691