ABB  Vol.3 No.4 , August 2012
Optimization of the bioconversion of glycerol to ethanol using Escherichia coli by implementing a bi-level programming framework for proposing gene transcription control strategies based on genetic algorithms
ABSTRACT
In silico approaches for metabolites optimization have been derived from the flood of sequenced and annotated genomes. However, there exist still numerous degrees of freedom in terms of optimization algorithm approaches that can be exploited in order to enhance yield of processes which are based on biological reactions. Here, we propose an evolutionary approach aiming to suggest different mutant for augmenting ethanol yield using glycerol as substrate in Escherichia coli. We found that this algorithm, even though is far from providing the global optimum, is able to uncover genes that a global optimizer would be incapable of. By over-expressing accB, eno, dapE, and accA mutants in ethanol production was augmented up to 2 fold compared to its counterpart E. coli BW25113.

Cite this paper
Barreto-Rodriguez, C. , Ramirez-Angulo, J. , Gomez-Ramirez, J. , Achenie, L. and Gonzalez-Barrios, A. (2012) Optimization of the bioconversion of glycerol to ethanol using Escherichia coli by implementing a bi-level programming framework for proposing gene transcription control strategies based on genetic algorithms. Advances in Bioscience and Biotechnology, 3, 336-343. doi: 10.4236/abb.2012.34049.
References
[1]   Glick B. J. and Pasternak J. J. (2003) “The Molecular Biotechnology Revolution” in “Molecular biotechnology: Principles and applications of recombinant DNA,” ASM Press, Washington, DC 3 – 13.

[2]   Kim H. U., Kim T. Y. and Lee S. Y. (2008) Metabolic flux analysis and metabolic engineering of microorganisms. Molecular Biosystems, 4, 113 – 120. doi:10.1039/b712395g

[3]   Burgard A. P., Pharkya P. and Maranas C. D. (2003) OptKnock: A Bilevel Programming Framework for Identifying Gene Knockout Strategies for Microbial Strain Optimization, Biotechnology and Bioengineering, 85, 1 – 11.

[4]   Edwards J. S. and Palsson B. O. (2000) Metabolic flux balance analysis and the in silico analysis of Escherichia coli k-12 gene deletions, BMC Bioinformatics. 1, 1 – 10. doi:10.1186/1471-2105-1-1

[5]   Knorr A. L., Jain R. and Srivastava R. (2007) Bayesian based selection of metabolic objective functions. Bioinformatics, 3, 351-357. doi:10.1093/bioinformatics/btl619

[6]   Reed J. L., Vo T. D., Schilling C. H. and Palsson B. O. (2003) An expanded genomescale model of Escherichia coli K-12 (iJR904 GSM/GPR), Genome Biology, 4 1 – 12. doi:10.1186/gb-2003-4-9-r54

[7]   Pharkya P. and Maranas C. D. (2005) An optimization framework for identifying reaction activation/inhibition or elimination candidates for overproduction in microbial systems, Metabolic Engineering, 8, 1 – 13. http://dx.doi.org/10.1016/j.ymben.2005.08.003

[8]   Brooke A., Kendrick D., Meeraus D. and Raman R. (2001) GAMS: A user’s Guide. GAMS development corporation, Washington D.C

[9]   Patil K. R., Rocha I., Forsoter J. and Nielsen J. (2005) Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinformatics, 6, 1-12. doi:10.1186/1471-2105-6-1

[10]   Becker S. A., Feist A. M., Mo M. L., Hannum G., Palsson B. O. and Herrgard M. J. (2007) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nature Protocols, 2, 727 – 738. doi:10.1038/nprot.2007.99

[11]   Kitagawa M., Ara T., Arifuzzaman M., Ioka-Nakamichi T., Inamoto E., Toyonaga H. and Mori H. (2005) Complete set of ORF clones of Escherichia coli ASKA library (A Complete Set of E. coli K-12 ORF Archive): Unique Resources for Biological Research. DNA Research, 12 291–299. doi:10.1093/dnares/dsi012

[12]   Sambrook J., Fritsch E.F. and Maniatis T. (1989) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

[13]   Vallejo F., González A., Posada A., Restrepo A. and Orduz S. (1999) Production of Bacillus thuringiensis subsp. medellin by batch and fed-batch culture, Biotechnology Techniques 13 279 – 281. doi:10.1023/A:1008974819161

 
 
Top