OJM  Vol.2 No.3 , August 2012
Fractal Approximation of Motion and Its Implications in Quantum Mechanics
Abstract: Inconsistencies of some standard quantum mechanical models (Madelung’s, de Broglie’s models) are eliminated as- suming the micro particle movements on continuous, but non-differentiable curves (fractal curves). This hypothesis, named by us the fractal approximation of motion, will allow an unitary approach of the phenomena in quantum me-chanics (separation of the physical motion of objects in wave and particle components depending on the scale of resolution, correlated motions of the wave and particle, i.e. wave-particle duality, the mechanisms of duality, by means of both phase wave-particle coherence and wave-particle incoherence, the particle as a clock, particle incorporation into the wave and the implications of such a process). Moreover, correspondences with standard gravitational models (Einstein’s model, string theory) can be also distinguished.
Cite this paper: M. Agop, D. Magop and E. Bacaita, "Fractal Approximation of Motion and Its Implications in Quantum Mechanics," Open Journal of Microphysics, Vol. 2 No. 3, 2012, pp. 33-45. doi: 10.4236/ojm.2012.23005.

[1]   L. Nottale and J. Schneider, “Fractals and Non-Standard Analysis,” Journal of Mathematical Physics, Vol. 25, No. 12, 1984, pp. 96-300.

[2]   L. Nottale, “Fractals and the Quantum Theory of Space-Time,” International Journal of Modern Physics, Vol. A4, No. 50, 1989, pp. 47-117.

[3]   L. Nottalle, “Fractal Space-Time and Microphysics: Towards a Theory of Scale Relativity,” World Scientific, Singapore, 1993.

[4]   L. Nottale, “Scale Relativity and Fractal Space-Time: Applications to Quantum Physics, Cosmology and Chaotic Systems,” Chaos, Solitons & Fractals, Vol. 7, No. 6, 1996, pp. 877-938.

[5]   L. Nottale, “The Theory of Scale Relativity: Non-Differentiable Geometry, Fractal Space-Time and Quantum Mechanics,” Computing Anticipatory Systems: CASYS’ 03-33 Sixth International Conference, Liège, 11-16 August 2003, pp. 68-95.

[6]   J. Chaline, L. Nottale and P. Grou, “The Trees of Evolution: Universe S,” Life Companies Societies, Paris, 2000.

[7]   J. Chaline, L. Nottale and P. Grou, “Flowers for Scrodinger Sscale Relativity and Its Applications,” Editure Ellipses Marketing, Paris, 2009.

[8]   A. Harabagiu and M. Agop, “Hydrodyamic Model of Scale Relativity Theory,” Bulletin of the Polytechnic Institute of Iasi, Vol. LV, No. 3-4, 2005, pp. 77-82.

[9]   A. Harabagiu, O. Niculescu, M. Colotin, T. D. Bibere, I. Gottlieb and M. Agop, “Particle in a Box by Means of Fractal Hydrodynamic Model,” Romanian Reports in Physics, Vol. 61, No. 3, 2009, pp. 395-400.

[10]   A. Harabagiu, D. Magop and M. Agop, “Fractality and Quantum Mechanics,” Ars Longa Publishing House, Ia?i, 2010.

[11]   M. Agop, L. Chico?, P. Nica and A. Harabagiu, “Euler’s Fluids and Non-Differentiable Space-Time,” Far East Journal of Dynamical Systems, Vol. 10, No. 1, 2008, pp. 93-106.

[12]   M. Agop, A. Harabagiu and P. Nica, “Wave-Particle Duality through a Hydrodynamic Model of the Fractal Space Time Theory,” Acta Physica Polonica A, Vol. 113, No. 6, 2008, pp. 1557-1574.

[13]   S. ?i?eica, “Quantum Mechanics,” Academiei Publishing House, Bucure?ti, 1984.

[14]   B. Felsager, “Geometry, Particles and Fields,” Odense University Press, Odense, 1981.

[15]   A. Peres, “Quantum Theory: Concepts and Methods,” Kluwer Academic Publishers, Boston, 1993.

[16]   J. J. Sakurai and T. S. Fu, “Modern Quantum Mechanics,” Addison-Wesley, Boston, 1994.

[17]   F. Halbwacs, “Theorie Relativiste Des Fluids a Spin,” Gauthier-Villars, Paris, 1960.

[18]   R. Madelung, “A Hydrodynamic Interpretation of Quantum Mechanics,” Journal for Physics, Vol. 40, No. 3-4, 1927, pp. 322-326.

[19]   D. Bohm and B. J. Hiley, “The Undivided Universe: An Ontological Interpretation of Quantum Theory,” Routledge and Kegan Paul, London, 1993.

[20]   D. D?rr, S. Goldstein and N. Zanghi, “Quantum Mechanics, Randomness and Deterministic Reality,” Physics Letters A, Vol. 172, No. 1-2, 1992, pp. 6-12. doi:10.1016/0375-9601(92)90181-K

[21]   D. D?rr, S. Goldstein and N. Zanchi, “A Global Equilibrium as the Foundation of Quantum Randomness,” Foundations of Physics, Vol. 23, 1993, pp. 712-738.

[22]   D. Z. Albert, “Bohm’s Alternative to Quantum Mechanics”, Scientific American, Vol. 270, No. 2, 1994, pp. 32-39. doi:10.1038/scientificamerican0594-58

[23]   J. S. Bell, “Speakable and Unspeakable in Quantum Mechanics,” Cambridge University Press, Cambridge, 1987.

[24]   K. Berndl, D. D?rr, S. Goldstein, G. Peruzzi and N. Zanchi, “Existance of Trajectories for Bohmian Mechanics,” International Journal of Theoretical Physics, Vol. 32, No. 12, 1993, pp. 2245-2251. doi:10.1007/BF00672996

[25]   K. Berndl, D. D?rr, S. Goldstein, N. Zanchi, “Selfa- djointness and the Existance of Deterministic Trajectories in Quantum Theory,” In: M. Fannes, C. Maes and A. Verbeure, Eds., On Three Levels: Micro-, Meso-, and Macroscopic Approches in Physics, (NATO ASI Series B: Physics), Plenum, New York, 1994, pp. 429-434.

[26]   P. R. Holland, “The Quantum Theory of Motion,” Camb- ridge University Press, Cambridge, 1993. doi:10.1017/CBO9780511622687

[27]   L. de Broglie, “Causal Interpretation Attempt and Non-Linear Wave Mechanics: The Theory of Double Solution,” Gauthier-Villars, Paris, 1956.

[28]   L. de Broglie, “The Measure Theory in Wave Mechanics,” Gauthier-Villars, Paris, 1957.

[29]   L. de Broglie, “Wave Mechanics Interpretation,” Journal of Physics Radium, Vol. 20, No. 12, 1959, pp. 963-979. doi:10.1051/jphysrad:019590020012096300

[30]   L. de Broglie, “Critical Study of the Current Foundations Interpretation of Wave Mechanics,” Gauthier-Villars, Paris, 1963.

[31]   L. de Broglie, “Thermodynamics of Isolated Particle (Hidden Thermodynamics of Particles),” Gauthier-Villars, Paris, 1964.

[32]   L. de Broglie, “Certainity and Uncertainity in Science,” Politic? Publishing House, Bucure?ti, 1980.

[33]   D. Bohm, “A Suggested Interpretation of Quantum Theory in Terms of ‘Hidden’ Variables I,” Physical Review, Vol. 85, No. 2, 1952, pp. 166-179. doi:10.1103/PhysRev.85.166

[34]   D. Bohm, “A Suggested Interpretation of Quantum Theory in Terms of ‘Hidden Variables’: Part II,” Physical Review, Vol. 85, No. 2, 1952, pp. 180-193. doi:10.1103/PhysRev.85.180

[35]   D. Bohm, “Proof that Probability Density Approaches in Causal Interpretation of Quantum Theory,” Physical Review, Vol. 89, No. 2, 1953, pp. 458-466. doi:10.1103/PhysRev.89.458

[36]   L. Budei, “Fractal Models: Applications in Enviroment Arhitecture,” Publishing House University, Gh. Asachi, Ia?i, 2000.

[37]   M. Barnsley, “Fractals Everywhere: The First Course in Deterministic Fractal Geometry,” Academic Press, Boston, 1988.

[38]   A. Le Mehante, “Les Geometries Fractales,” Hermes, Paris, 1990.

[39]   A. Heck and J. M. Perdang, “Applying Fractals in Astronomy,” Springer Verlag, Berlin, 1991.

[40]   J. Feder and A. Aharony, “Fractals in Physics,” North-Holland, Amsterdam, 1990.

[41]   P. Berge, Y. Pomeau and C. Vidal, “The Order in Chaos,” Wiley, New York, 1984.

[42]   J. F. Gouyet, “Physical Structures and Fractals,” Masson, Paris, 1992.

[43]   M. S. El Naschie, O. E. R?ssler and I. Prigogine, “Quantum Mechanics, Diffusion and Chaotic Fractals”, Elsevier, Oxford, 1995.

[44]   P. Weibel, G. Ord and O. E. R?ssler, “Space Time Physics and Fractality: Festschroft in Honer of Mohamad El Naschie Vienna,” Springer, New York, 2005.

[45]   E. Nelson, “Quantum Fluctuations,” Princeton University Press, Princeton, 1985.

[46]   M. Agop, M. Colotin and V. P?un, “Haoticity, Fractality and Fields: Elements of Fractal Theory,” Publishing House ArsLonga, Ia?i, 2009, pp. 12-46.

[47]   V. Chioroiu, L. Munteanu, P. ?tiuc? and S. Donescu, “Introduction in Nanomechanics,” Publishing House Academiei Romane, Bucure?ti, 2005.

[48]   D. K. Ferry and S. M. Goodnick, “Transport in Nanostructures,” Cambridge University Press, Cambridge, 2001.

[49]   Y. Imry, “Introduction to Mesoscopic Physics,” Oxford University Press, Oxford, 2002.

[50]   D. Benoit, “Physics of Semiconductor Microcavities from Fundamentals to Nano-Scale Decretes,” Wiley-VCH Verlag GmbH, Weinheim, 2007.

[51]   C. Ciuti and I. Camsotto, “Quantum Fluids Effects and Parametric Instabilities in Microcavities,” Physica Status Solidi B, Vol. 242, No. 11, 2005, p. 2224.

[52]   C. P. Poole, K. A. Farach and R. Creswick, “Super-Conductivity,” Academic Press, San Diego, 1995.

[53]   G. Gr?ssing, “Diffusion Waves in Sub-Quantum Thermodynamics: Resolution of Einstein’s ‘Particle-in-a-Box’ Objection,” 2008.

[54]   A. Mandelis, L. Nicolaides and Y. Chen, “Structure and the Reflectionless/Refractionless Nature of Parabolic Diffusion-Wave Fields, “ Physical Review Letters, Vol. 87, No. 2, 2001, 4 pages. doi:10.1103/PhysRevLett.87.020801

[55]   A. Mandelis, “Diffusion Waves and Their Uses,” Physics Today, Vol. 53, No. 8, 2000, p. 29. doi:10.1063/1.1310118

[56]   S. Popescu, “Actual Issues in Self-Structuring Systems,” Publishing House Tehnopress, Iasi, 2004.

[57]   E. R. Bittner, “Quantum Tunneling Dynamics Using Hydrodynamic Trajectories,” Journal of Chemical Physics, Vol. 112, No. 22, 2000, p. 9703. doi:10.1063/1.481607

[58]   D. Ruelle and F. Takens, “On the Nature of Turbulence,” Communications in Mathematical Physics, Vol. 20, No. 23, 1971, pp. 167-192,

[59]   D. Ruelle, “Strange Attractors,” The Mathematical Intelligencer, Vol. 2, No. 3, 1979, pp. 126-137.

[60]   C. V. Munceleanu, D. Magop, C. Marin and M. Agop, “Fractal Models in Polymer Physics,” Ars Longa Publishing House, Iasi, 2010.

[61]   F. J. Ernst, “New Formulation of the Axially Symemetric Gravitational Fielf Problem I,” Physical Reviews, Vol. 167, No. 5, 1968, pp. 1175-1178. doi:10.1103/PhysRev.167.1175

[62]   F. J. Ernst, “Exterior Algebraic Derivation of Einstein Field Equation Employing a Generalized Basis,” Journal of Mathematical Physics, Vol. 12, No. 11, 1971, pp. 2395-2398. doi:10.1063/1.1665549

[63]   M. Agop and N. Mazilu, “Fundaments of Modern Physics,” Junimea Publishing House, Iasi, 1989.

[64]   M. Agop and N. Mazilu, “The Crossroads of the Theories between Newton and Einstein Barbilian’s Univers,” Ars Longa, Ia?i, 2010.

[65]   M. B. Green, J. H. Schwarz and E. Witten, “Superstring Theory,” Cambridge University Press, Cambridge, 1998.