Back
 JMP  Vol.3 No.8 , August 2012
Propagation of Electrostatic Waves in an Ultra-Relativistic Dense Dusty Electron-Positron-Ion Plasma
Abstract: The nonlinear propagation of waves (specially solitary waves) in an ultra-relativistic degenerate dense plasma (containing ultra-relativistic degenerate electrons and positrons, cold, mobile, inertial ions, and negatively charged static dust) have been investigated by the reductive perturbation method. The linear dispersion relation and Korteweg de-Vries equation have been derived whose numerical solutions have been analyzed to identify the basic features of electrostatic solitary structures that may form in such a degenerate dense plasma. The existence of solitary structures has been also verified by employing the pseudo-potential method. The implications of our results in astrophysical compact objects have been briefly discussed.
Cite this paper: N. Roy, M. Zobaer and A. Mamun, "Propagation of Electrostatic Waves in an Ultra-Relativistic Dense Dusty Electron-Positron-Ion Plasma," Journal of Modern Physics, Vol. 3 No. 8, 2012, pp. 850-855. doi: 10.4236/jmp.2012.38111.
References

[1]   S. Chandrasekhar, “The Density of White Dwarf Stars,” Philosophical Magazine, Vol. 11, No. 7, 1931, pp. 592- 596.

[2]   S. Chandrasekhar, “The Maximum Mass of Ideal White Dwarfs,” Astrophysical Journal, Vol. 74, No. 1, 1931, pp. 81-82. doi:10.1086/143324

[3]   S. Chandrasekhar, “The Highly Collapsed Configurations of a Steller Mass (Second Paper),” Monthly Notics of the Royal Astronmical Science, Vol. 170, No. 1935, 1935, pp. 226-228.

[4]   D. Koester and G. Chanmugam, “Physics of White Dwarf Stars,” Report on Progress in Physics, Vol. 53, No. 7, 1990, p. 837. doi:10.1088/0034-4885/53/7/001

[5]   S. L. Shapiro and S. A. Teukolsky, “Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact - bjects,” John Wiley and Sons, New York, 1983.

[6]   E. Garcia-Berro, S. Torres, L. G. Althaus, I. Renedo, P. Lorén-Aguiltar, A. H. Córsico R. D. Rohrmann, M. Salaris, and J. Isern, “A White Dwarf Cooling Age of 8 Gyr for NGC 6791 from Physical Separation Process,” Nature, Vol. 465, 2010, pp. 194-196. doi:10.1038/nature09045

[7]   G. Brodin and M. Marklund, “Spin Megnetohydrodynamics,” New Journal of Physics, Vol. 9, No. 8, 2007, pp. 227. doi:10.1088/1367-2630/9/8/277

[8]   P. K. Shukla and B. Eliasson, “Formation and Dynamics of Dark Solitons and Vortices in Quantum ElectrPlas- mas,” Physics Review Letter, Vol. 96, No. 24, 2006, Article ID: 245001. doi:10.1103/PhysRevLett.96.245001

[9]   P. K. Shukla and B. Eliasson, “Nonlinear Interactions between Electromagnetic Waves and Electron Plasma Os- cillations in Quantum Plasmas,” Physics Review Letter, Vol. 99, No. 9, 2007, Article ID: 096401. doi:10.1103/PhysRevLett.99.096401

[10]   D. Shaikh and P. K.Shukla, “Fluid Turbulance in Quantum Plasmas,” Physics Review Letter, Vol. 99, No. 12, 2007, Article ID: 125002. doi:10.1103/PhysRevLett.99.125002

[11]   M. Marklund and G. Brodin, “Dynamics of Spin-1/2 Quantum Plasmas,” Physics Review Letter, Vol. 98, No. 2, 2007, Article ID: 025001. doi:10.1103/PhysRevLett.98.025001

[12]   P. K. Shukla, “A New Spin in Quantum Plasmas,” Nature Physics, Vol. 5, 2009, pp. 92-93. doi:10.1038/nphys1194

[13]   W. Masood, B. Eiasson and P. K. Shukla, “Electromag- netic Wave Equations for Relativistically Degenerate Quan- tum Magnetoplasmas,” Physics Review E, Vol. 81, No. 6, 2010, Article ID: 066401. doi:10.1103/PhysRevE.81.066401

[14]   G. Brodin and M. Marklund, “Spin Solitons in Magneized Pair Plasmas, Physics of Plasmas, Vol. 14, No. 11, 2007, Article ID: 112107. doi:10.1063/1.2793744

[15]   M. Marklund, B. Eiasson and P. K. Shukla, “Magnetosonic Solitons in a Fermionic Quantum Plasma,” Phys- ics Review E, Vol. 76, No. 6, 2007, Article ID: 067401. doi:10.1103/PhysRevE.76.067401

[16]   G. Manfredi, “How to Model Quantum Plasmas,” Proceedings of the Workshop on Kinetic Theory The Fields Institute Communications Series, Toronto, 29 March-2 April 2004, p. 263.

[17]   F. Hass, “Variational Approach for the Quantum Zakharov System,” Physics of Plasmas, Vol. 14, No. 4, 2007, Article ID: 042309. doi:10.1063/1.2722271

[18]   A. Misra and S. Samanta, “Quantum Electro Acoustic Double Layers in a Magnetoplasma,” Physics of Plasmas, Vol. 15, No. 12, 2008, Article ID: 122307. doi:10.1063/1.3040014

[19]   A. P. Misra, S. Banerjee, F. Haas, P. K. Shukla and L. PG. Assis, “Temporal Dynamics in Quantum Zakharov Equa- tions for Plasmas,” Physics of Plasmas, Vol. 17, No. 3, 2010, Article ID: 032307. doi:10.1063/1.3356059

[20]   S. Maxon and J. Viecelli, “Spherical Solitons,” Physics Review Letter, Vol. 32, No. 1, 1974, pp. 4-6. doi:10.1103/PhysRevLett.32.4

[21]   I. B. Bernstein, J. M. Greene and M. D. Kruskal, “Exact Nonlinear Plasma Oscillations,” Physics Review Letter, Vol. 108, No. 3, 1957, p. 546.

[22]   R. Z. Sagdeev, “Cooperative Phenomena and Shock Waves in Collisionless Plasmas,” Reviews of Plasma Physics, Vol. 4, 1966, p. 23

[23]   A. A. Mamun and P. K. Shukla, “Arbitrary Amplitude Solitary Waves and Double Layers in an Ultra-Relativistic Degenerate Dense Dusty Plasma,” Physics Letter A, Vol. 374, No. 41, 2010, pp. 4238-4241. doi:10.1016/j.physleta.2010.08.038

 
 
Top