How to Introduce the Basis of Algorithmics? Thanks to the Enumeration and Composition of All Riffle Shuffles from a N Card Deck Used in MathMagic

P. Schott^{*}

Show more

References

[1] Aldous, D., & Diaconis, P. (1986). Shuffling cards and stopping times. The American Mathematical Monthly, 93, 333-348.
doi:10.2307/2323590

[2] Ammar, M. (1998). The complete cups & balls. Tahoma, MA: L&L Publishing.

[3] Assaf, S., Soundararajan, K., & Diaconis, P. (2009). Riffle shuffles of a deck with repeated cards. 21st International Conference on Formal Power Series and Algebraic Combinatorics, Hagenberg, 20-24 July 2009, 89-102.

[4] Diaconis, P., Graham, R. L., & Kantor, W. M. (1983). The mathematics of perfect shuffles. Advances in Applied Mathematics, 4, 175-196.
doi:10.1016/0196-8858(83)90009-X

[5] Diaconis, P. (1998). From shuffling cards to walking around the building. An introduction to markov chain theory. Proceedings of the International Congress of Mathematicians, 1, 187-204.

[6] Diaconis, P. (2003). Mathematical developments from the analysis of riffle-shuffling. In A. Fuanou, & M. Liebeck, (Eds.), Groups combinatorics and geometry (pp.73-97). Hackensack, NJ: World Scientific.

[7] Erdnase, S. W. (1902). The expert at the card table. Mineola, NY: Dover Publication.

[8] Gardner, M. (1958). Mathematics, magic and mystery. Mineola, NY: Dover Publication.

[9] Gardner, M. (2005). Martin Gardner’s mathematical games: The entire collection of his scientific American columns. Washington DC: Mathematical Association of America.

[10] Gilbreath, N. L. (1958). Magnetic colors. The Linking Ring, 3, 60.

[11] Gilbreath, N. L. (1966). Second Gilbreath principle. Linking Ring, June 1966.

[12] Gilbreath, N. L. (1989). Magic for an audience. Series of 3 Articles in Genii, 52.

[13] Huet, G. (1991). The Gilbreath trick: A case study in axiomatisation and proof development in the Coq Proof Assistant. Proceedings of Second Workshop on Logical Frameworks, Edinburgh, May 1991.
doi:10.1017/CBO9780511569807

[14] Lachal, A., & Schott, P. (2012). Cartomagie: Principes de Gilbreath (I). Quadrature, 85, 24-35.

[15] Magid, A. (2005). Notices. Washington DC: American Mathematical Society.

[16] Mayol, H. (2000). La magie des cordes maestro. Gassaway, WV: HBM Production.

[17] Mulcahy, C. (2003). Fitch Cheney’s five card trick. Maths Horizon, 10.

[18] Mulcahy, C. (2004). Top 5 reasons to like mathematical card tricks. American Mathematical Society, 11,

[19] Mulcahy, C. (2007). An ESPeriment with Cards. American Mathematical Society, 14.

[20] Poincaré, H. (1912). Calcul des probabilités. Paris: Gauthier-Villars.

[21] Schott, P. (2009). The use of magic in mathematics: From primary school to higher education. Proceedings of ICERI2009 Conference, Madrid, 16-18 November 2009, 58-70.

[22] Schott, P. (2010). The use of magic in optics in higher education. Creative Education, 1, 11-17.

[23] Schott, P. (2011). How to introduce the cyclic group and its properties representation with Matlab? Thanks to Magic using the perfect Faro shuffle. Creative Education, 1, 27-40.

[24] Sheynin, O. B. (1991). H. Poincaré’s work on probability. Archive for History of Exact Sciences, 42.

[25] Xuereb, C., Clement, O., & Haddad, D. (2010). Le mélange américain. Projet IRI 5, Paris: ESME Sudria.