WJV  Vol.2 No.3 , August 2012
Therapeutic MUC1-Based Cancer Vaccine Expressed in Flagella-Efficacy in an Aggressive Model of Breast Cancer
Abstract: MUC1, a tumor-associated antigen overexpressed in many carcinomas, represents a candidate of choice for cancer immunotherapy. Flagella-based MUC1 vaccines were tested in therapeutic setting in two aggressive breast cancer models, comprising the implantation of the 4T1-MUC1 cell line in either Balb/c, or Human MUC1 transgenic mice in which spontaneous metastases occurs. Recombinant flagella carrying only 7 amino acid of MUC1 elicited therapeutic activity, affecting both the growth of established growing tumors and the number of metastases. Higher therapeutic activity was achieved with an additional recombinant flagella designed with the SYFPEITHI algorithm. The vaccines triggered a Th1 response against MUC1 with no evident autoimmune response towards healthy MUC1-expressing tissues. Recombinant flagella carrying a 25-residue fragment of MUC1, induced the most effective response, as evidenced by a significant reduction of both the size and growth rate of the tumor as well as by the lower number of metastases, and expanding life span of vaccinated mice.
Cite this paper: N. Machluf and R. Arnon, "Therapeutic MUC1-Based Cancer Vaccine Expressed in Flagella-Efficacy in an Aggressive Model of Breast Cancer," World Journal of Vaccines, Vol. 2 No. 3, 2012, pp. 109-120. doi: 10.4236/wjv.2012.23015.

[1]   O. J. Finn, “Cancer Vaccines: Between the Idea and the Reality,” Nature Reviews Immunology, Vol. 3, No. 8, 2003, pp. 630-641. doi:10.1038/nri1150

[2]   S. B. Ho, G. A. Niehans, C. Lyftogt, P. S. Yan, D. L. Cherwitz, et al., “Heterogeneity of Mucin Gene Expression in Normal and Neoplastic Tissues,” Cancer Research, Vol. 53, No. 3, 1993, pp. 641-651.

[3]   J. Taylor-Papadimitirou, J. Burchell, D. W. Miles and M. Dalziel, “MUC1 and Cancer,” Biochimica et Biophysica Acta, Vol. 1455, No. 2-3, 1999, pp. 301-313. doi:10.1016/S0925-4439(99)00055-1

[4]   M. A. McGuckin, M. D. Walsh, B. G. Hohn, B. G. Ward and R. G. Wright, “Prognostic Significance of MUC1 Epithelial Mucin Expression in Breast Cancer,” Human Pathology, Vol. 26, No. 4, 1995, pp. 432-439. doi:10.1016/0046-8177(95)90146-9

[5]   A. M. Vlad, J. C. Kettel, N. M. Alajez, C. A. Carlos and O. J. Finn, “MUC1 Immunobiology: From Discovery to Clinical Applications,” Advances in Immunology, Vol. 82, 2004, pp. 249-293. doi:10.1016/S0065-2776(04)82006-6

[6]   E. Yang, X. F. Hu and P. X. Xing, “Advances of MUC1 as a Target for Breast Cancer Therapy,” Histology and Histopathology, Vol. 22, No. 8, 2007, pp. 905-922.

[7]   S. M. Newton, C. O. Jacob and B. A. Stocker, “Immune Response to Cholera Toxin Epitope Inserted in Salmonella Flagellin,” Science, Vol. 244, No. 4900, 1989, pp. 70-72. doi:10.1126/science.2468182

[8]   R. Levi and R. Arnon, “Synthetic Recombinant Influenza Vaccine Induces Efficient Long-Term Immunity and Cross-Strain Protection,” Vaccine, Vol. 4, No. 1, 1996, pp. 85-92. doi:10.1016/0264-410X(95)00088-I

[9]   T. Ben-Yedidia, R. Tarrab-Hazdai, D. Schechtman and R. Arnon, “Instranasal Administration of Synthetic Recombinant Peptide-Based Vaccine Protects Mice from Infection by Schistosoma Mansoni,” Infection and Immunity, Vol. 67, No. 9, 1999, pp. 4360-4366.

[10]   T. Ben-Yedidia, H. Marcus, Y. Reisner and R. Arnon, “Intranasal Administration of Peptide Vaccine Protects Human/Mouse Radiation Chimera from Influenza Infection,” International Immunology, Vol. 11, No. 7, 1999, pp. 1043-1051. doi:10.1093/intimm/11.7.1043

[11]   A. N. Honko, N. Siranganathan, C. J. Lees, S. B. Mizal, “Flagellin Is an Effective Adjuvant for Immunization against Lethal Respiratory Challenge with Yersinia Pestis,” Infection and Immunity, Vol. 74, No. 2, 2006, pp. 1113-1120. doi:10.1128/IAI.74.2.1113-1120.2006

[12]   B. L. Whittle, E. Lee, R. C. Weir and N. K. Verma, “Immune Response to a Murray Valley Encephalitis Virus Epitope Expressed in the Flagellin of an Attenuated Strain of Salmonella,” Journal of Medical Microbiology, Vol. 46, No. 2, 1997, pp. 129-138. doi:10.1099/00222615-46-2-129

[13]   N. K. Verma, H. K. Ziegler, B. A. Stocker and G. K. Schoolnick, “Induction of a Cellular Immune Response to a Defined T-Cell Epitope as an Insert in the Flagellin of a Live Vaccine Strain in Salmonella,” Vaccine, Vol. 13, No. 3, 1995, pp. 235-244. doi:10.1016/0264-410X(95)93308-V

[14]   C. Cuadros, F. J. Lopez-Hernandez, A. L. Dominguez, M. McClelland and J. Lustgartent, “Flagellin Fusion Proteins as Adjuvants or Vaccines Induce Specific Immune Response,” Infection and Immunity, Vol. 72, No. 5, 2004, pp. 2810-2816. doi:10.1128/IAI.72.5.2810-2816.2004

[15]   D. Van Duin, R. Medzhitov and A. C. Shaw, “Triggering TLR Signalling in Vaccination,” Trends in Immunology, Vol. 27, No. 1, 2006, pp. 49-55. doi:10.1016/

[16]   T. Ben-Yedidia and R. Arnon, “Effect of Pre-Existing Carrier Immunity on the Efficacy of Synthetic Influenza Vaccine,” Immunology Letters, Vol. 64, No. 1, 1998, pp. 9-15. doi:10.1016/S0165-2478(98)00073-X

[17]   G. H. Rammensee, J. Bachmann, N. N. Emmerich, O. A. Bachor and S. Stevanovic, “SYFPEITHI: Database for MHC Ligands and Peptide Motifs,” Immunogenetics, Vol. 50, No. 3-4, 1999, pp. 213-219. doi:10.1007/s002510050595

[18]   E. H. Moase, W. Qi, T. Ishida, Z. Gabos, B. M. Longenecker, et al., “Anti-MUC-1 Immunoliposomal Doxorubicin in the Treatment of Murine Models of Metastatic Breast Cancer,” Biochimica et Biophysica Acta, Vol. 1510, No. 1-2, 2001, pp. 43-55. doi:10.1016/S0005-2736(00)00334-5

[19]   G. J. Rowse, R. M. Tempero, M. L. VanLith, M. A. Hollingworth and S. J. Gendler, “Tolerance and Immunity to MUC1 in a Human MUC1 Transgenic Murine Model,” Cancer Research, Vol. 58, No. 2, 1998, pp. 314-321.

[20]   S. J. McSorley, B. D. Ehst, Y. Yu and A. T. Gewirtz, “Bacterial Flagellin is an Effective Adjuvant for CD4+ T Cells in Vivo,” The Journal of Immunology, Vol. 169, No. 7, 2002, pp. 3914-3919.

[21]   L. Sfrondini, A. Rossini, D. Besusso, A. Merlo, E. Tagliabue, et al., “Antitumor Activity of the TLR-5 Ligand Flagellin in Mouse Models of Cancer,” The Journal of Immunology, Vol. 176, No. 11, 2006, pp. 6624-6630.

[22]   L. Strindelius, M. Filler and I. Sjoholm, “Mucosal Immunization with Purified Flagellin from Salmonella Induces Systemic and Mucosal Immune Response in CH3/HEJ Mice,” Vaccine, Vol. 22, No. 27-28, 2004, pp. 3797-3808. doi:10.1016/j.vaccine.2003.12.035

[23]   S. Agrawal, A. Agrawal, B. Doughty, A. Gerwitz, J. Blenis, et al., “Cutting Edge: Different Toll-Like Receptor Agonists Instruct Dendritic Cells to Induce Distinct Th Responses via Differential Modulation of Extracellular Signal-Regulated Kinase-Mitogen-Activated Protein Kinase and c-Fos,” The Journal of Immunology, Vol. 171, No. 10, 2003, pp. 4984-4989.

[24]   A. Didierlaurent, I. Ferrero, L. A. Otten, B. Dubois, M. Reinhardt, et al., “Flagellin Promotes Myeloid Differentiation Factor 88-Dependent Development of Th2-Type Response,” The Journal of Immunology, Vol. 172, No. 11, 2004, pp. 6922-6930.

[25]   R. M. Salazar-Gonzalez and S. J. McSorley, “Salmonella Flagellin a Microbial Target of the Innate and Adaptive Immune System,” Immunology Letters, Vol. 101, No. 2, 2005, pp. 117-122. doi:10.1016/j.imlet.2005.05.004

[26]   S. Ho Jeon, T. Ben-Yedidia and R. Arnon, “Intranasal Immunization with Synthetic Recombinant Vaccine Containing Multiple Epitopes of Influenza Virus,” Vaccine, Vol. 20, No. 21-22, 2002, pp. 2772-2780. doi:10.1016/S0264-410X(02)00187-1

[27]   P. Zheng, S. Sarma, Y. Guo and Y. Liu, “Two Mechanisms for Tumor Evasion of Preexisting Cytotoxic T-Cell Responses: Lessons from Recurrent Tumors,” Cancer Research, Vol. 59, No. 14, 1999, pp. 3461-3467.

[28]   N. M. Alajez, J. Schmielau, M. D. Alter, M. Casio and O. J. Finn, “Therapeutic Potential of a Tumor-Specific MHC-Unrestricted T-Cell Receptor Expressed on Effector Cells of the Innate and the Adaptive Immune System through Bone Marrow Transduction and Immune Reconstitution,” Blood, Vol. 105, No. 12, 2005, pp. 4583-4589. doi:10.1182/blood-2004-10-3848

[29]   R. K. Ramanathan, K. M. Lee, J. McKolanis, E. Hitbold, W. Schraut, et al., “Phase I Study of a MUC1 Vaccine Composed of Different Doses of MUC1 Peptide with SBAS2 Adjuvant in Resected and Locally Advanced Pancreatic Cancer,” Cancer Immunology, Immunotherapy, Vol. 54, No. 3, 2004, pp. 254-264. doi:10.1007/s00262-004-0581-1

[30]   B. Acres, “Cancer Immunotherapy: Plase II Clinical Studies with TG4010 (MVA-MUC1-IL2),” Journal of B.U.ON.: Official Journal of the Balkan Union of Oncology, Vol. 12, Suppl. 1, 2007, pp. S71-S75.

[31]   V. Apostolopoulos, G. A. Pietersz, A. Tsibanis, A. Tsikkinis, H. Drakaki, et al., “Pilot Phase III Immunotherapy Study in Early Stage Breast Cancer Patients Using Oxidized Mannan-MUC1,” Breast Cancer Research, Vol. 8, No. 3, 2006, pp. 27-32. doi:10.1186/bcr1505

[32]   R. Sangha and S. North, “L-BLP25: A MUC1 Targeted Peptide Vaccine Therapy in Prostate Cancer,” Expert Opinion on Biological Therapy, Vol. 7, No. 11, 2007, pp. 1723-1730. doi:10.1517/14712598.7.11.1723

[33]   J. Wierecky, M. R. Müller, S. Wirths, E. Halder-Oehler, D. D?rfel, et al., “Immunologic and Clinical Responses after Vaccinations with Peptide-Pulsed Dendritic Cells in Metastasic Renal Cancer Patients,” Cancer Research, Vol. 66, No. 11, 2006, pp. 5910-5918. doi:10.1158/0008-5472.CAN-05-3905

[34]   K. Yamamoto, T. Ueno, T. Kawaoka, S. Hazama, M. Fukui, et al. “MUC1 Peptide Vaccination in Patients with Advanced Pancreas or Biliary Tract Cancer,” Anticancer Research, Vol. 25, No. 5, 2005, pp. 3575-3579.

[35]   D. T. O’Hagan, M. L. MacKichan and M. Singh, “Recent Developments in Adjuvants for Vaccines against Infectious Diseases,” Biomolecular Engineering, Vol. 18, No. 3, 2001, pp. 69-85. doi:10.1016/S1389-0344(01)00101-0

[36]   N. Yajima, R. Yamanaka, T. Mine, N. Tsuchiya, J. Homma, et al., “Immunologic Evaluation of Personalized Peptide Vaccination for Patients with Advanced Malignant Glioma,” Clinical Cancer Research, Vol. 11, No. 16, 2005, pp. 5900-5911. doi:10.1158/1078-0432.CCR-05-0559

[37]   C. Pasare and R. Medzhitov, “Toll Pathway-Dependent Blockade of CD4+CD25+ T Cell-Mediated Suppression by Dendritic Cells,” Science, Vol. 299, No. 5609, 2005, pp. 1033-1036. doi:10.1126/science.1078231