Operator Equation and Application of Variation Iterative Method

Show more

References

[1] D. Guo and V. Lashmikantham, “Nonlinear Problems in abstract Cones,” Academic Press, Inc., Boston, New York, 1988.

[2] Y. J. Cui, F. Wang and Y. M. Zou, “Computation for the Fixed Index and Its Applications,” Nonlinear Analysis, Vol. 71, No. 1-2, 2009, pp. 219-226.
doi:10.1016/j.na.2008.10.041

[3] S. Y. Xu, “New Fixed Point Theorems for 1-Set-Contractive Operators in Banach Spaces,” Nonlinear Analysis, Vol. 67, No. 3, 2007, pp. 938-944.
doi:10.1016/j.na.2006.06.051

[4] N. Van Luong and N. X. Thuan, “Coupled Fixed Points in Partial Ordered Metric Spaces and Application,” Nonlinear Analysis, Vol. 74, No. 3, 2011, pp. 983-992.
doi:10.1016/j.na.2010.09.055

[5] N. Chen, and J. Q. Chen, “New Fixed Point Theorems for 1-Set-Contractive Operators in Banach Spaces,” Nonlinear Analysis, Vol. 6, No. 3, 2011, pp. 147-162.

[6] G. Z. Li, “The Fixed Point Index and the Fixed Point Theorems of 1-Set-Contrac-Tive Mappings,” Proceedings of the American Mathematical Society, Vol. 104, No. 4, 1988, pp. 1163-1170.
doi:10.1090/S0002-9939-1988-0969052-9

[7] C. X. Zhu and Z. B. Xu, “Inequality and Solution of an Operator Equation,” Applied Mathematics Letters, Vol. 21, No. 6, 2008, pp. 607-611.
doi:10.1016/j.aml.2007.07.013

[8] R. Saadati, M. Dehghan, S. M. Vaezpour and M. Saravi, “The Convergence of He’s Variational Iteration for Solving Integral Equations,” Computers & Mathematics with Applications, Vol. 58, No. 11-12, 2009, pp. 2167-2171.
doi:10.1016/j.camwa.2009.03.008

[9] Y. F. Xu, “The Variational Iteration Method for Autonomous Ordinary Differential Equations with Fractional Order,” Journal of Hubei University Nationalities (Nature Science Edition), Vol. 29, No. 3, 2011, pp. 245-249.

[10] G. B. Asghar and S. N. Jafar, “An Effective Modification of He’s Variational Iteration Method,” Nonlinear Analysis: Real World Application, Vol. 10, No. 5, 2009, pp. 2828-2833. doi:10.1016/j.nonrwa.2008.08.008

[11] J. H. He, “Variational Iteration Approach to Schrodinger Equation,” Acta Mathematica Scienca, Vol. 21A, 2001, pp. 577-583.

[12] S .Q. Wang and J. H. He, “Variational Iterative Method for Solving Integro-Differential Equations,” Physics Letters A, Vol. 367, No. 3, 2007, pp. 188-191.
doi:10.1016/j.physleta.2007.02.049

[13] Z. Z. Zhang and S. R. Lu, “Numerical Solution of Schrodinger Equation,” Journal of Shanxi Daton Universeity, Vol. 26, No. 2, 2010, pp. 22-24.

[14] Y. F. Wang and L. B. Tang, “Direct Solution of One-Dimensional Schrodinger Equation through Finite Difference and MATLAB Matrix Computation,” INFRARED (MONTHLY), Vol. 31, No. 3, 2010, pp. 42-46.