AM  Vol.3 No.8 , August 2012
The Mathematical Modelling for Studying the Influence of the Initial Stresses and Relaxation Times on Reflection and Refraction Waves in Piezothermoelastic Half-Space
ABSTRACT
The present paper concentrates on the study of reflection and refraction phenomena of waves in pyroelectric and piezo-electric media under initial stresses and two relaxation times influence by apply suitable conditions. The generalized theories of linear piezo-thermoelasticity have been employed to investigate the problem. In two-dimensional model of transversely isotropic piezothermoelastic medium, there are four types of plane waves quasi-longitudinal (qP), quasi-transverse (qSV), thermal wave (T-mode), and potential electric waves (φ-mode) The amplitude ratios of reflection and refraction waves have been obtained. Finally, the results in each case are presented graphically.

Cite this paper
F. Alshaikh, "The Mathematical Modelling for Studying the Influence of the Initial Stresses and Relaxation Times on Reflection and Refraction Waves in Piezothermoelastic Half-Space," Applied Mathematics, Vol. 3 No. 8, 2012, pp. 819-832. doi: 10.4236/am.2012.38123.
References
[1]   R. D. Mindlin, “On the Equations of Motion of Piezoelectric Crystals,” In: N. I. Muskilishivili, Ed., Problems of continuum Mechanics, 70th Birthday Volume, SIAM, Philadelphia, 1961, pp. 282-290.

[2]   W. Nowacki, “Some General Theorems of Thermo-Piezoelectricity,” Journal of Thermal Stresses, Vol. 1, No. 2, 1978, pp. 171-182. HUdoi:10.1080/01495737808926940U

[3]   W. Nowacki, “Foundation of Linear Piezoelectricity,” In: H. Parkus, Ed., Interactions in Elastic Solids, Springer, Wein, 1979.

[4]   D. S. Chandrasekharaiah, “A Generalized Thermoelastic Wave Propagation in a Semi-Infinite Piezoelectric Rod,” Acta Mechanica, Vol. 71, No. 1-4, 1988, pp. 39-49. HUdoi:10.1007/BF01173936U

[5]   J. N. Sharma and M. Kumar, “Plane Harmonic Waves in Piezo-Thermoelastic Materials,” Indian Journal of Engineering and Material Science, Vol. 7, 2000, pp. 434-442.

[6]   J. N. Sharma and V. Walia, “Further Investigations on Rayleigh Waves in Piezothermoelastic Materials,” Journal of Sound and Vibration, Vol. 301, No. 1-2, 2007, pp. 189-206. HUdoi:10.1016/j.jsv.2006.09.018U

[7]   H. Deresiewicz, “Effect of Boundaries on Waves in a Thermoelastic Solid: Re?exion of Plane Waves from Plane Boundary,” Journal of the Mechanics Physics of Solids, Vol. 8, No. 3, 1960, pp. 164-172. HUdoi:10.1016/0022-5096(60)90035-1U

[8]   H. Lord and Y. Shulman, “A Generalized Dynamical Theory of Thermoelasticity,” Journal of the Mechanics and Physics of Solid, Vol. 15, No. 5, 1967, pp. 299-309. HUdoi:10.1016/0022-5096(67)90024-5U

[9]   A. E. Green and K. A. Lindsay, “Thermoelasticity,” Journal of Elasticity, Vol. 2, No. 1, 1972, pp. 1-7. HUdoi:10.1007/BF00045689U

[10]   A. N. Sinha and S. B. Sinha, “Re?ection of Thermoelastic Waves at a Solid Half-Space with Thermal Relaxation,” Journal of Physics of the Earth, Vol. 22, No. 2, 1974, pp. 237-244. HUdoi:10.4294/jpe1952.22.237U

[11]   J. N. Sharma, “Reflection of Thermoelastic Waves from the Stress-Free Insulated Boundary of an Anisotropic Half-Space,” Indian Journal of Pure and Applied Mathematics, Vol. 19, 1988, pp. 294-304.

[12]   S. B. Sinha and K. A. Elsibai, “Reflection of Thermoelastic Waves at a Solid Half-Space with Two Thermal Relaxation Times,” Journal of Thermal Stresses, Vol. 19, 1996, pp. 763-777. HUdoi:10.1080/01495739608946205U

[13]   S. B. Sinha and K. A. Elsibai, “Reflection and Refraction of Thermoelastic Waves at an Interface of Two Semi-Infinite Media with Two Thermal Relaxation Times,” Journal of Thermal Stresses, Vol. 20, No. 2, 1997, pp. 129-146. HUdoi:10.1080/01495739708956095U

[14]   A. N. Abd-Alla and A. A. S. Al-Dawy, “The Reflection Phenomena of SV Waves in a Generalized Thermoelastic Medium,” International Journal of Mathematics and Mathematical Sciences, Vol. 23, No. 8, 2000, pp. 529-546. HUdoi:10.1155/S0161171200004221U

[15]   J. N. Sharma, V. Kumar and D. Chand, “Reflection of Generalized Thermoelastic Waves from the Boundary of a Half-Space,” Journal of Thermal Stresses, Vol. 26, No. 10, 2003, pp. 925-942. HUdoi:10.1080/01495730306342U

[16]   J. N. Sharma, V. Walia and S. K. Gupta, “Reflection of Piezo-Thermoellastic Waves from the Charge and Stress Free Boundary of a Transversely Isotropic Half Space,” International Journal of Engineering Science, Vol. 46, No. 2, 2008, pp. 131-146. HUdoi:10.1016/j.ijengsci.2007.10.003U

[17]   Z.-B. Kuang and X.-G. Yuan, “Reflection and Transmission of Waves in Pyroelectric and Piezoelectric Materials,” Journal of Sound and Vibration, Vol. 330, No. 6, 2011, pp. 1111-1120. HUdoi:10.1016/j.jsv.2010.09.026U

[18]   A. N. Abd-Alla and F. A. Alsheikh,” Reflection and Refraction of Plane Quasi-Longitudinal Waves at an Interface of Two Piezoelectric Media under Initial Stresses,” Archive of Applied Mechanics, Vol. 79, No. 9, 2009, pp. 843-857. HUdoi:10.1007/s00419-008-0257-yU

[19]   A. N. Abd-Alla, F. A. Alsheikh and A. Y. Al-Hossain, “The Reflection Phenomena of Quasi-Vertical Transverse Waves in Piezoelectric Medium under Initial Stresses,” Meccanica, Vol. 47, No. 3, 2012, pp. 731-744. HUdoi:10.1007/s11012-011-9485-2U

[20]   J. D. Achenbach, “Wave Propagation in Elastic Solids,” North-Holland Publishing Company, Amsterdam, 1973.

[21]   J. N. Sharma, M. Pal and D. Chand, “Three-Dimensional Vibration Analysis of a Piezothermoelastic Cylindrical Panel,” International Journal of Engineering Science, Vol. 42, No. 15-16, 2005, pp. 1655-1673. HUdoi:10.1016/j.ijengsci.2004.01.006U

 
 
Top