[1] C. Shannon, “The Mathematical Theory of Communication,” The University of Illinois Press, Urbana, 1949.
[2] A. De Luca and S. Termini, “A Definition of Nonprobabilitistic Entropy in the Setting of Fuzzy Sets Theory,” Information and Control, Vol. 20, 1972, pp. 301-312.
[3] B. Liu, “Some Research Problems in Uncertainty Theory,” Journal of Uncertain Systems, Vol. 3, No. 1, 2009, pp. 3-10.
[4] A comprehensive list of references can currently be obtained from http://tsallis.cat.cbpf.br/biblio.htm
[5] C. Tsallis, “Possible Generalization of Boltzmann-Gibbs,” Statistics, Vol. 52, No. 1-2, 1988, pp. 479-487. doi:10.1007/BF01016429
[6] C. Tsallis, “Non-Extensive Thermostatistics: Brief Review and Comments,” Physica A, Vol. 221, No. 1-3, 1995, pp. 277-290. doi:10.1016/0378-4371(95)00236-Z
[7] S. Abe, “Axiom and Uniqueness Theorem for Tsallis Entropy,” Physics Letters A, Vol. 271, No. 1-2, 2000, pp. 74-79. doi:10.1016/S0375-9601(00)00337-6
[8] S. Abe and Y. Okamoto, “Nonextensive Statistical Mechanics and Its Applications, Lecture Notes in Physics,” Springer-Verlag, Heidelberg, 2001. doi:10.1007/3-540-40919-X
[9] R. J. V. dos Santos, “Generalization of Shannon’s Theorem for Tsallis Entropy,” Journal of Mathematical Physics, Vol. 38, No. 8, 1997, pp. 4104-4107. doi:10.1063/1.532107
[10] B. Liu, “Uncertainty Theory,” 2nd Edition, Springer-Verlag, Berlin, 2007.
[11] B. Liu, “Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty,” Springer-Verlag, Berlin, 2010. doi:10.1007/978-3-642-13959-8
[12] B. Liu, “Fuzzy Process, Hybrid Process and Uncertain Process,” Journal of Uncertain Systems, Vol. 2, No. 1, 2008, pp. 3-16. http://orsc.edu.cn/process/071010.pdf
[13] X. Li and B. Liu, “Hybrid Logic and Uncertain Logic,” Journal of Uncertain Systems, Vol. 3, No. 2, 2009, pp. 83-94.
[14] B. Liu, “Uncertain Set Theory and Uncertain Inference Rule with Application to Uncertain Control,” Journal of Uncertain Systems, Vol. 4, No. 2, 2010, pp. 83-98.
[15] B. Liu, “Uncertain Risk Analysis and Uncertain Reliability Analysis,” Journal of Uncertain Systems, Vol. 4, No. 3, 2010, pp. 163-170.
[16] B. Liu, “Theory and Practice of Uncertain Programming,” 2nd Edition, Springer-Verlag, Berlin, 2009. doi:10.1007/978-3-540-89484-1
[17] W. Dai and X. Chen, “Entropy of Function of Uncertain Variables,” Technical Report, 2009. http://orsc.edu.cn/online/090805.pdf
[18] X. Chen and W. Dai, “Maximum Entropy Principle for Uncertain Variables,” Technical Report, 2009. http://orsc.edu.cn/online/090618.pdf
[19] X. Chen, “Cross-Entropy of Uncertain Variables and Its Applications,” Technical Report, 2009. http://orsc.edu.cn/online/091021.pdf
[20] W. Dai, “Maximum Entropy Principle of Quadratic Entropy of Uncertain Variables,” Technical Report, 2010. http://orsc.edu.cn/online/100314.pdf
[21] Z. X. Peng and K. Iwamura, “A Sufficient and Necessary Condition of Uncertainty Distribution,” Journal of Interdisciplinary Mathematics, Vol. 13, No. 3, 2010, pp. 277-285.