On Eccentric Connectivity Index and Polynomial of Thorn Graph

Nilanjan De^{*}

Show more

References

[1] V. Sharma, R. Goswami and A. K. Madan, “Eccentric Connectivity Index: A Novel Highly Discriminating Topological Descriptor for Structure-Property and Structure-Activity Studies,” Journal of Chemical Information and Modeling, Vol. 37, No. 2, 1997, pp. 273-282.
doi:10.1021/ci960049h

[2] I. Gutman, “Distance in Thorny Graph,” Publications de l’Institut Mathématique (Beograd), Vol. 63, 1998, pp. 31-36.

[3] A. Ili? and I. Gutman, “Eccentric Connectivity Index of Chemical Trees,” MATCH—Communications in Mathematical and in Computer Chemistry, Vol. 65, 2011, pp. 731-744.

[4] B. Zhou and Z. Du, “On Eccentric Connectivity Index,” MATCH—Communications in Mathematical and in Computer Chemistry, Vol. 63, 2010, pp. 181-198.

[5] P. Dankelmann, W. Goddard and C. S. Swart, “The Average Eccentricity of a Graph and Its Subgraphs,” Utilitas Mathematica, Vol. 65, 2004, pp. 41-51.

[6] D. Vuki?evi? and A. Graovac, “Note on the Comparison of the First and Second Normalized Zagreb Eccentricity Indices,” Acta Chimica Slovenica, Vol. 57, 2010, pp. 524-528.

[7] T. Do?li?, M. Saheli and D. Vuki?evi?, “Eccentric Connectivity Index: Extremal Graphs and Values,” Iranian Journal of Mathematical Chemistry, Vol. 1, No. 2, 2010, pp. 45-56.

[8] K. C. Das and N. Trinajsti?, “Relationship between the Eccentric Connectivity Index and Zagreb Indices,” Computers & Mathematics with Applications, Vol. 62, No. 4, 2011, pp. 1758-1764. doi:10.1016/j.camwa.2011.06.017

[9] L. Zhang and H. Hua, “The Eccentric Connectivity Index of Unicyclic Graphs,” International Journal of Contemporary Mathematical, Vol. 5, No. 46, 2010, pp. 2257-2262.

[10] J. Yang and F. Xia, “The Eccentric Connectivity Index of Dendrimers,” International Journal of Contemporary Mathematical, Vol. 5, No. 45, 2010, pp. 2231-2236.

[11] M. Ghorbani and M. Hemmasi, “Eccentric Connectivity Polynomial of C12n+4 Fullerenes,” Digest Journal of Nanomaterials and Biostructures, Vol. 4, No. 3, 2009, pp. 545-547.

[12] B. Zhou and D. Vuki?evi?, “On Wiener-Type Polynomials of Thorn Graphs,” Journal of Chemometrics, Vol. 23, No. 12, 2009, pp. 600-604.

[13] D. Bonchev and D. J. Klein, “On the Wiener Number of Thorn Trees, Stars, Rings, and Rods,” Croatica Chemica Acta, Vol. 75, No. 2, 2002, pp. 613-620.

[14] A. Heydari and I. Gutman, “On the Terminal Wiener Index of Thorn Graphs,” Kragujevac Journal of Science, Vol. 32, 2010, pp. 57-64.

[15] B. Zhou, “On Modified Wiener Indices of Thorn Trees,” Kragujevac Journal of Mathematics, Vol. 27, 2005, pp. 5-9.

[16] D. Vuki?evi?, B. Zhou and N. Trinajsti?, “Altered Wiener Indices of Thorn Trees,” Croatica Chemica Acta, Vol. 80, No. 2, 2007, pp. 283-285.

[17] H. B. Walikar, H. S. Ramane, L. Sindagi, S. S. Shirakol and I. Gutman, “Hosoya Polynomial of Thorn Trees, Rods, Rings, and Stars,” Kragujevac Journal of Science, Vol. 28, 2006, pp. 47-56.

[18] S. Li, “Zagreb Polynomials of Thorn Graphs,” Kragujevac Journal of Science, Vol. 33, 2011, pp. 33-38.