OJBIPHY  Vol.2 No.3 , July 2012
Primordial Open-System Thermodynamics and the Origin of a Biophysics Selection Principle
Abstract: Mesons and baryons, according to their rest mass and half-life, show a tendency for de-confinement and re-confinement of energy, contributing to a continuous surge of enthalpy along the primordial chronology. The strong force opposes to the separation of the constitutive quarks of pions, which by self-multiplication, absorb the energy released by decay and pair-annihilation. The 1% of mass apported by quarks requires an additional 99% of energy from this decay to manifest as gluons-hadrons formation. Processes like oscillation neutron-proton and antineutron-antiproton cycles are capable to capture primordial radiation, and may have prevented a Universe immersed into residual gamma radiation.
Cite this paper: A. Bennun, "Primordial Open-System Thermodynamics and the Origin of a Biophysics Selection Principle," Open Journal of Biophysics, Vol. 2 No. 3, 2012, pp. 72-79. doi: 10.4236/ojbiphy.2012.23010.

[1]   Z. K. Silangadze, “Maxwell’s Demon through the Looking Glass,” Acta Physica Polonica, Vol. 38, No. 1, 2007, pp. 101-126.

[2]   P. Glansdorff and L. Prigogine, “Thermodynamics Theory of Structure, Stability and Fluctuations,” Wiley-Interscience, London, 1971.

[3]   I. Prigogine and G. Nicolis, “Self-Organization in NonEquilibrium Systems,” Wiley-Interscience, London, 1977.

[4]   I. Prigogine and C. George, “The Second Law as a Selection Principle: The Microscopic Theory of Dissipative Processes in Quantum Systems,” Proceedings of the National Academy of Sciences of USA, Vol. 80, 1983, pp. 4590-4594.

[5]   D. Bru? and G. Leuchs, “Lectures on Quantum Information,” Wiley-VCH, Weinheim, 2007.

[6]   A. Sakharov, “Violation of CP Invariance, C Asymmetry and Baryon Asymmetry of the Universe,” Journal of Experimental and Theoretical Physics, Vol. 5, 1967, pp. 2427.

[7]   A. Sakharov, “Cosmological Model of the Universe with a Time Vector Inversion,” Journal of Experimental and Theoretical Physics, Vol. 52, 1980, pp. 349-351.

[8]   A. Sakharov, “Baryonic Asymmetry of the Universe,” Journal of Experimental and Theoretical Physics, Vol. 49, 1979, pp. 594-599.

[9]   C. H. Llewellyn Smith, “High Energy Behaviour and Gauge Symmetry,” Physics Letters B, Vol. 46, No. 2, 1973, pp. 233-236. doi:10.1016/0370-2693(73)90692-8

[10]   A. Strominger, S. T. Yau and E. Zaslow, “Mirror Symmetry Is T-Duality,” Nuclear Physics B, Vol. 479, No. 12, 1996, pp. 243-259.

[11]   V. A. Kuzmin, “CP-Noninvariance and Baryon Asymmetry of the Universe,” Journal of Experimental and Theoretical Physics, Vol. 12, 1970, pp. 228-230.

[12]   R. P. Feynman, “Space-Time Approach to Nonrelativistic Quantum Mechanics,” Review Modern Physics, Vol. 20, 1948, pp. 367-387. doi:10.1103/RevModPhys.20.367

[13]   R. P. Feynman, “Elementary Particles and the Laws of Physics: The 1986 Dirac Memorial Lectures,” Cambridge University Press, Cambridge, 1987.

[14]   H. Reeves, “Chronicles of Atoms and Stars,” Alianza Editorial, Spain, 2009.

[15]   C. M. Ho and D. Boyanovksy, “Space-Time Propagation of Neutrino Wave Packets at High Temperature and Density,” Physical Review D, Vol. 73, No. 12, 2006, Article ID: 125014. doi:10.1103/PhysRevD.73.125014

[16]   J. H. Christenson, J. W. Cronin, V. L. Fitch and R. Turlay, “Evidence for the 2π Decay of the K20 Meson,” Physical Review Letters, Vol. 13, No. 4, 1964, pp. 138-140.doi:10.1103/PhysRevLett.13.138

[17]   B. Aubert, et al., “Observation of CP Violation in the B0 Meson System,” Physical Review Letters, Vol. 87, No. 9, 2001, Article ID: 091801doi:10.1103/PhysRevLett.87.091801

[18]   D. Kirkby and Y. Nir, “CP Violation in Meson Decays,” 2012.

[19]   K. Nakamura, et al., “Review of Particle Physics,” Journal of Physics G, Vol. 37, 2010, Article ID: 075021. doi:10.1088/0954-3899/37/7A/075021

[20]   J. Cepa, “Physical Cosmology,” Ediciones Akal, Spain, 2007.

[21]   L. Bergstr?m and A. Goobar, “Cosmology and Particle Astrophysics,” Wiley, Weinheim, 1999.

[22]   H. Reeves, “El Primer Segundo: últimas Noticias del cosmos, 2,” Andres Bello, Chile, 1998.

[23]   K. Aamodt, et al, “Production of Pions, Kaons and Protons in pp Collisions at sqrt(s) = 900 GeV with ALICE at the LHC,” Europan Physical Journal C, Vol. 71, 2011, p. 1655.

[24]   T. D. Cohen, “Fishing Antihypernuclei out of a QuarkGluon Soup,” Science, Vol. 328, No. 5974, 2010, pp. 5556.

[25]   J. Glanz, “Surprising Asymmetry Seen in Kaon Decays,” Science, Vol. 1428, No. 5407, 1999, p. 1428.doi:10.1126/science.283.5407.1428a

[26]   C. Giunti and C. W. Kim, “Fundamentals of Neutrino Physics and Astrophysics,” Oxford University Press, Oxford, 2007. doi:10.1093/acprof:oso/9780198508717.001.0001

[27]   Symmetry Breaking, “FERMILAB Scientists Find Evidence for Significant Matter-Antimatter Asymmetry,” 2010.


[29]   antimatter-asymmetry/

[30]   A. Cho, “Hints of Greater Matter-Antimatter Asymmetry Challenge Theorists,” Science, Vol. 328, No. 5982, 2010, p. 1087. doi:10.1126/science.328.5982.1087-a

[31]   J. M. Cline, M. Joyce and K. Kainulainen, “Supersymmetric Electroweak Baryogenesis in the WKB Approximation,” Physics Letters B, Vol. 417, 1998, pp. 79-96.

[32]   R. Shrock, “Neutrinos and Implications for Physics Beyond the Standard Model,” World Scientific Publishing Co., Singapore, 2003.

[33]   A. W. Wolfendale, “More Missing Neutrinos,” Nature, Vol. 334, 1988, pp. 382-383.

[34]   M. Dine and A. Kusenko, “Origin of the Matter-Antimatter Asymmetry,” Reviews of Modern Physics, Vol. 76, No. 1, 2004, pp. 1-30.

[35]   M. Rafi Alam, I. Ruiz Simo, M. SajjadAthac and J. Vicente Vacas, “Weak Kaon Production off the Nucleon,” Physical Review D, Vol. 82, No. 3, 2010, Article ID: 033001. doi:10.1103/PhysRevD.82.033001

[36]   A. S. Kronfeld, “The Weight of the World is Quantum Chromodynamics,” Science, Vol. 332, 2008, pp. 1198-1199.

[37]   T. D. Cohen, “Fishing Antihypernuclei out of a QuarkGluon Soup,” Science, Vol. 328, No. 5974, 2010, pp. 5556.

[38]   E. Santopinto and R. Bijker, “Flavor Asymmetry of Sea Quarks in the Unquenched Quark-Model,” Physical Review C, Vol. 82, No. 6, 2010, Article ID: 062202.doi:10.1103/PhysRevC.82.062202

[39]   D. Boer, Z. B. Kang, W. Vogelsang and F. Yuan, “Test of the Universality of Naive-Time-Reversal-Odd Fragmentation Functions,” Physical Review Letters, Vol. 105, No. 20, 2010, Article ID: 202001.doi:10.1103/PhysRevLett.105.202001

[40]   J. M. Lattimer and M. Prakash, “The Physics of Neutron Stars,” Science, Vol. 304, No. 5670, 2004, pp. 536-542.

[41]   H. Rubin and R. Sitgreaves, “Probability Distributions Related to Random Transformations on a Finite Set,” Technical Report, Stanford University, Stanford, 1954.

[42]   J. M. Lattimerand M. Prakash, “The Physics of Neutron Stars,” Science, Vol. 304, No. 5670, 2004, pp. 536-542.

[43]   T. Maruyana, T. Kajino, N. Yasutake, M.-K. Cheoun and C.-Y. Ryu, “Asymmetric Neutrino Emission from Magnetized Proton-Neutron Star Matter Including Hyperons in Relativistic Mean Field Theory,” Physical Review D, Vol. 83, No. 8, 2011, Article ID: 081303.doi:10.1103/PhysRevD.83.081303

[44]   A. Bennun and M. Avron, “Light-Dependent and LightTriggered Adenosine Triphosphatases in Chloroplasts,” Biochimica Biophysica Acta, Vol. 79, 1964, pp. 646-648.

[45]   A. Bennun and M. Avron, “The Relation of the LightDependent and Light-Triggered Adenosine Triphosphatases to Photophosphorylation,” Biochimica Biophysica Acta, Vol. 109, 1965, pp. 117-127.

[46]   A. Bennun, “Hypothesis on the Role of Liganded States of Proteins in Energy Transducing Systems,” Biosystems, Vol. 7, No. 2, 1975, pp. 230-244.

[47]   A. Bennun, “Hypothesis for Coupling Energy Transduction with ATP Synthesis or ATP Hydrolysis,” Nature New Biology, Vol. 233, No. 35, 1971, pp. 5-8.

[48]   A. Bennun, “The Unitary Hypothesis on the Coupling of Energy Transduction and Its Relevance to the Modeling of Mechanisms,” Annals of the New York Academy of Sciences, Vol. 227, 1974, pp. 116-145.

[49]   S. Ghosh, et al., “Entanglement Quantum State of Magnetic Dipoles,” Nature, Vol. 425, 2003, pp. 48-51.

[50]   L. Amico, R. Fazio, A. Osterloh and V. Vedral, “Entanglement in Many-Body Systems,” Reviews of Modern Physics, Vol. 80, No. 2, 2008, pp. 517-576.

[51]   M. Sarovar, A. Ishizaki, G. R. Fleming and K. Birgitta Whaley, “Quantum Entanglement in Photosynthetic LightHarvesting Complexes,” Nature Physics, Vol. 6, 2010, pp. 462-467.

[52]   V. Vedral, “Living in a Quantum World,” Scientific American, Vol. 304, No. 6, 2011, pp. 20-25.

[53]   A. H. Guth, “Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems,” Physical Review D, Vol. 23, No. 2, 1981, pp. 347-356. doi:10.1103/PhysRevD.23.347

[54]   A. H. Guth and S. Y. Pi, “Fluctuations in the New Inflationary Universe,” Physical Review Letters, Vol. 49, No. 15, 1982, pp. 1110-1113. doi:10.1103/PhysRevLett.49.1110

[55]   A. Linde, “Quantum Cosmology, Inflation, and the Anthropic Principle,” In: J. D. Barrow, P. Davis and C. L. Harper, Jr., Eds., Science and Ultimate Reality: Quantum Theory, Cosmology and Complexity, Cambridge University Press, Cambridge, 2004.doi:10.1017/CBO9780511814990.023

[56]   P. Steinhardt, “The Inflation Debate,” Scientific American, Vol. 304, No. 4, 2011, pp. 18-25.

[57]   R. Penrose, “The Road to Reality,” Jonathan Cape, London, 2004.

[58]   E. Pierpaoli, D. Scott and M. White, “How Flat Is the Universe?” Science, Vol. 287, No. 5461, 2000, pp. 21712172.

[59]   D. Petz, “Quantum Information Theory and Quantum Statistics,” Springer, Heidelberg, 2008.

[60]   A. Friedmann, “On the Curvature of Space,” General Relativity and Gravitation, Vol. 31, No. 12, 1999, pp. 19912000. doi:10.1023/A:1026751225741

[61]   Royal Astronomical Society, “Astronomers Find Evidence of Cosmic Climate Change,”

[62]   A. Gangui, “In Support of Inflation,” Science, Vol. 291, No. 5505, 2001, pp. 837-838.

[63]   A. Annila and E. Annila, “Why Did Life Emerge?” International Journal of Astrobiology, Vol. 7, 2008, pp. 293-300.