MNSMS  Vol.2 No.3 , July 2012
Adaptive Neuro-Fuzzy Inference System for Prediction of Effective Thermal Conductivity of Polymer-Matrix Composites
ABSTRACT
In the present study, the adaptive neuro-fuzzy inference system (ANFIS) is developed for the prediction of effective thermal conductivity (ETC) of different fillers filled in polymer matrixes. The ANFIS uses a hybrid learning algorithm. The ANFIS is a class of adaptive networks that is functionally equivalent to fuzzy inference systems (FIS). The ANFIS is based on neuro-fuzzy model, trained with data collected from various sources of literature. ETC is predicted using ANFIS with volume fraction and thermal conductivities of fillers and matrixes as input parameters, respectively. The predicted results by ANFIS are in good agreements with experimental values. The predicted results also show the supremacy of ANFIS in comparison with other earlier developed models.

Cite this paper
R. Bhoopal, R. Singh and P. Sharma, "Adaptive Neuro-Fuzzy Inference System for Prediction of Effective Thermal Conductivity of Polymer-Matrix Composites," Modeling and Numerical Simulation of Material Science, Vol. 2 No. 3, 2012, pp. 43-50. doi: 10.4236/mnsms.2012.23005.
References
[1]   W. Zhou, S. Qi, H. Li and S. Shao, “Study on Insulating Thermal Conductive BN/HDPE Composites,” Thermochimica Acta, Vol. 45, No. 1, 2007, pp. 36-42. doi:10.1016/j.tca.2006.10.018

[2]   A. S. Luyt, J. A. Molefi and H. Krump, “Thermal, Mechanical and Electrical Properties of Copper Powder Filled Low-Density and Linear Low-Density Polyethylene Composites,” Polymer Degradation and Stability, Vol. 91, No. 7, 2006, pp. 1629-1636. doi:10.1016/j.polymdegradstab.2005.09.014

[3]   Y. Xu, D. D. L. Chung and C. Morz, “Thermally Conducting Aluminum Nitride Polymer—Matrix Composites,” Composites Part A: Applied Science and Manufacturing, Vol. 32, No. 12, 2001, pp. 1749-1757. doi:10.1016/S1359-835X(01)00023-9

[4]   J. Gu, Q. Zhang, J. Dang, J. Zhang and Z. Yang, “Thermal Conductivity and Mechanical Properties of Aluminum Nitride Filled Linear Low-Density Polyethylene Composites,” Polymer Engineering & Science, Vol. 49, No. 5, 2009, pp. 1030-1034. doi:10.1002/pen.21336

[5]   J. C. Maxwell, “A Treatise on Electricity and Magnetism,” 3rd Edition, Dover, New York, 1954.

[6]   R. L. Hamilton and O. K. Crosser, “Thermal Conductivity of Heterogeneous Two-Component Systems,” Industrial & Engineering Chemistry Fundamentals, Vol. 1, No. 3, 1962, pp. 187-191. doi:10.1021/i160003a005

[7]   R. Singh and H. S. Kasana, “Computational Aspects of Effective Thermal Conductivity of Highly Porous Metal Foams,” Applied Thermal Engineering, Vol. 24, No. 13, 2004, pp. 1841-1849. doi:10.1016/j.applthermaleng.2003.12.011

[8]   R. Singh and P. Sharma, “Effective Thermal Conductivity of Polymer Composites,” Advanced Engineering Materials, Vol. 10, No. 4, 2008, pp. 366-370. doi:10.1002/adem.200700336

[9]   R. Pal, “On the Lewis-Nielson Model for Thermal/Electrical Conductivity of Composites,” Composites Part A: Applied Science and Manufacturing, Vol. 39, No. 5, 2008, pp. 718-726. doi:10.1016/j.compositesa.2008.02.008

[10]   R. Pal, “New Model for Thermal Conductivity of Particulate Composites,” Journal of Reinforced Plastics and Composites, Vol. 26, No. 7, 2007, pp. 643-651. doi:10.1177/0731684407075569

[11]   R. Singh, P. K. Sharma and R. S. Bhoopal, “Prediction of Effective Thermal Conductivity of Cellular and Polymer Composites,” Indian Journal of Pure Applied Physics, Vol. 49, No. 5, 2011, pp. 344-349.

[12]   A. Boudenne, L. Ibos, M. Fois and E. Gehin, “Thermophysical Properties of Polypropylene/Aluminum Composites,” Journal of Applied Polymer Science, Vol. 42, No. 4, 2004, pp. 722-732.

[13]   D. Kumlutas, I. H. Tavman and M. T. Coban, “Thermal Conductivity of Particle Filled Polyethylene Composite Materials,” Composites Science and Technology, Vol. 63, No. 1, 2003, pp. 113-117. doi:10.1016/S0266-3538(02)00194-X

[14]   D. Kumlutas and I. H. Tavman, “A Numerical and Experimental Study on Thermal Conductivity of Particle Filled Polymer Composites,” Journal of Thermoplastic Composite Materials, Vol. 19, No. 4, 2006, pp. 441-455. doi:10.1177/0892705706062203

[15]   H. Serkan, D. Kumlutas and I. H. Tavman, “Effect of Particle Shape on Thermal Conductivity of Copper Reinforced Polymer Composites,” Journal of Reinforced Plastics and Composites, Vol. 26, No. 1, 2007, pp. 113-121. doi:10.1177/0731684407072522

[16]   T. K. Dey and M. Tripathi, “Thermal Properties of Silicon Powder Filled High-Density Polyethylene Composites,” Thermochimica Acta, Vol. 502, No. 1-2, 2010, pp. 35-42. doi:10.1016/j.tca.2010.02.002

[17]   M. Wang and N. Pan, “Predictions of Effective Physical Properties of Complex Multiphase Materials,” Materials Science and Engineering: R, Vol. 63, No. 1, 2008, pp. 130.

[18]   M. Wang, J. Heb, J. Yu and N. Pan, “Lattice Boltzmann Modeling of the Effective Thermal Conductivity for Fibrous Materials,” International Journal of Thermal Sciences, Vol. 46, No. 9, 2007, pp. 848-855. doi:10.1016/j.ijthermalsci.2006.11.006

[19]   R. Singh, R. S. Bhoopal and S. Kumar, “Prediction of Effective Thermal Conductivity of Moist Porous Materials Using Artificial Neural Network Approach,” Building & Environment, Vol. 46, No. 12, 2011, pp. 2603-2608. doi:10.1016/j.buildenv.2011.06.019

[20]   R. S. Bhoopal, P. K. Sharma, S. Kumar, A. Pandey, R. S. Beniwal and R. Singh, “Prediction of Effective Thermal Conductivity of Polymer Composites Using Artificial Neural Network Approach,” Special Topics & Review in Porous Media—An International Journal, Vol. 3, No. 2, 2012, pp. 115-123.

[21]   V. A. Gotlib, T. Sato and A. I. Beltzer, “Neural Computing of Effective Properties of Random Composite Materials,” Computer Structure, Vol. 79, No. 1, 2001, pp. 1-6. doi:10.1016/S0045-7949(00)00134-6

[22]   Z. Zhang and K. Friedrich, “Artificial Neural Networks Applied to Polymer Composites: A Review,” Composites Science and Technology, Vol. 63, No. 14, 2003, pp. 20292044. doi:10.1016/S0266-3538(03)00106-4

[23]   I. J. Turias, J. M. Gutierrez and P. L. Galindo, “Modeling the Effective Thermal Conductivity of an Unidirectional Composite by the Use of Artificial Neural Networks,” Composites Science and Technology, Vol. 65, No. 3-4, 2005, pp. 609-619. doi:10.1016/j.compscitech.2004.09.018

[24]   H. EI Kadi, “Modeling the Mechanical Behavior of Fiber-Reinforced Polymeric Composite Materials Using Artificial Neural Network—A Review,” Composite Structure, Vol. 73, No. 1, 2006, pp.1-23. doi:10.1016/j.compstruct.2005.01.020

[25]   M. S. AI-Haik, M. Y. Hussaini and H. Garmestani, “Prediction of Non-Linear Viscoelastic Behavior of Polymeric Composites Using an Artificial Neural Network,” International Journal of Plasticity, Vol. 22, No. 7, 2006, pp. 1367-1392. doi:10.1016/j.ijplas.2005.09.002

[26]   T. Takagi and M. Sugeno, “Fuzzy Identification of System and Its Applications to Modelling and Control,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 15, No. 1, 1985, pp. 116-132.

[27]   J. S. R. Jang, “ANFIS: Adaptive-Network-Based Fuzzy Inference System,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 23, No. 3, 1993, pp. 665-685. doi:10.1109/21.256541

[28]   P. Werbos, “New Tools for Prediction and Analysis in the Behavioral Sciences,” Ph.D. Dissertation, Harvard University, Cambridge, 1974.

[29]   I. Krupa and I. Chodak, “Physical Properties of Thermoplastic/Graphite Composites,” European Polymer Journal, Vol. 37, No. 11, 2001, pp. 2159-2168. doi:10.1016/S0014-3057(01)00115-X

 
 
Top