JCPT  Vol.2 No.3 , July 2012
Optical and Dielectric Studies on L-Valinium Picrate Single Crystal
ABSTRACT
Single crystals of L-Valinium picrate were grown from aqueous solution by slow evaporation technique. Single crystal X-ray diffraction analysis reveals that the crystal belongs to monoclinic system. The optical transmission study reveals the transparency of the crystal in the entire visible region and the cut off wave length has been found to be 470 nm. The optical band gap is found to be 2.55 eV. The transmittance of L-Valinium picrate crystal has been used to calculate the refractive index (n), the extinction coefficient (K) and both the real (εr) and imaginary (εi) components of the dielectric constant as functions of wavelength. Low dielectric loss at high frequency region is indicative of enhanced optical quality with lesser defects. Photoconductivity measurements carried out on the grown crystal reveal the negative photoconducting nature.

Cite this paper
P. Koteeswari, P. Mani and S. Suresh, "Optical and Dielectric Studies on L-Valinium Picrate Single Crystal," Journal of Crystallization Process and Technology, Vol. 2 No. 3, 2012, pp. 117-120. doi: 10.4236/jcpt.2012.23015.
References
[1]   C. Zhang, Z. Li, H. j. Cong, J. y. Wang, H. j. Zhang and R. I. Boughton, “Crystal growth and thermal properties of Single Crystal Monoclinic NdCOB (NdCa4O(BO3)3),” Journal of Alloys and Compounds, Vol. 507, No. 2, 2010, pp. 335-340. doi:10.1016/j.jallcom.2010.07.174

[2]   M. J. Rosker, P. Cunningham, M. D. Ewbank, H. O. Marcy, F. R. Vachss, L. F. Warren, R. Gappinger and R. Borwick, “Salt-Based Approach for Frequency Conversion Materials,” Pure and Applied Optics, Vol. 5, No. 5, 1996, p. 667. doi:10.1088/0963-9659/5/5/020

[3]   S. k. Gao, W. j. Chen, G. m. Wang and J. z. Chen, “Synthesis, crystal growth and characterization of organic NLO material: N-(4-nitrophenyl)-N-methyl-2-aminoacetonitrile (NPAN),” Journal of Crystal Growth, Vol. 297, No. 2, 2006, pp. 361-365. doi:10.1016/j.jcrysgro.2006.09.047

[4]   A. P. Jeyakumari, J. Ramajothi and S. Dhanuskodi, “Structural and Microhardness Studies of a NLO material— Bisthiourea Cadmium Chloride,” Journal of Crystal Growth, Vol. 269, No. 2-4, 2004, pp. 558-564. doi:10.1016/j.jcrysgro.2004.05.059

[5]   H. Q. Sun, D. R. Yuan, X. Q. Wang, X. F. Cheng, C. R. Gong, M. Zhou, H. Y. Xu, X. C. Wei, C. N. Luan, D. Y. Pan, Z. F. Li and X. Z. Shi, “A Novel Metal-Organic Coordination Complex Crystal: Tri-Allylthiourea Zinc Chloride (ATZC),” Crystal Research and Technology, Vol. 40, No. 9, 2005, pp. 882-886.

[6]   K. Anitha, B. Sridhar and R. K. Rajaram, “L-Valinium picrate,” Acta Crystallographica, Vol. E60, 2004, pp. o1530-o1532. doi:10.1107/S160053680401949X

[7]   A. Ashour, N. El-Kadry and S. A. Mahmoud, “On the electrical and Optical Properties of CdS Films Thermally Deposited by a Modified Source,” Thin Solid Films, Vol. 269, No. 1-2, 1995, pp. 117-120. doi:10.1016/0040-6090(95)06868-6

[8]   V. Gupta and A. Mansingh, “Influence of postdeposition annealing on the structural and Optical Properties of sputtered Zinc Oxide Film,” Journal of Applied Physics, Vol. 80, No. 2, 1996, pp. 1063-1073. doi:10.1063/1.362842

[9]   M. A. Gaffar, A. Abu El-Fadl and S. Bin Anooz, “Influence of strontiumdoping on the indirectbandgap and opticalconstants of ammoniumzincchloridecrystals,” Physica B: Condensed Matter, Vol. 327, No. 1, 2003, pp. 43-54. doi:10.1016/S0921-4526(02)01700-3

[10]   C. P. Smyth, “Dielectric Behavior and Structure,” McGrawHill, New York, 1965.

[11]   C. Balarew and R. Duhlew, “Application of the hard and Soft Acids and Bases Concept to Explain Ligand Coordination in Double Salt Structures,” Journal of Solid State Chemistry, Vol. 55, No. 1, 1984, pp. 1-6. doi:10.1016/0022-4596(84)90240-8

[12]   R. H. Bube, “Photoconductivity of Solids,” Wiley, New York, 1981.

[13]   I. M. Ashraf, H. A. Elshaik and A. M. Badr, “Photoconductivity in Tl4S3 Layered Single Crystals,” Crystal Research and Technology, Vol. 39, No. 1, 2004, pp. 63-70. doi:10.1002/crat.200310150

[14]   V. N. Joshi, “Photoconductivity,” Marcel Dekker, New York, 1990.

[15]  

 
 
Top