ACS  Vol.2 No.3 , July 2012
The Global Weather Research and Forecasting (GWRF) Model: Model Evaluation, Sensitivity Study, and Future Year Simulation
ABSTRACT
Global WRF (GWRF) is an extension of the mesoscale Weather Research and Forecasting (WRF) model that was developed for global weather research and forecasting applications. GWRF is being expanded to simulate atmospheric chemistry and its interactions with meteorology on a global scale. In this work, the ability of GWRF to reproduce major boundary layer meteorological variables that affect the fate and transport of air pollutants is assessed using observations from surface networks and satellites. The model evaluation shows an overall good performance in simulating global shortwave and longwave radiation, temperature, and specific humidity, despite large biases at high latitudes and over-Arctic and Antarctic areas. Larger biases exist in wind speed and precipitation predictions. These results are generally consistent with the performance of most current general circulation models where accuracies are often limited by a coarse grid resolution and inadequacies in sub-filter-scale parameterizations and errors in the specification of external forcings. The sensitivity simulations show that a coarse grid resolution leads to worse predictions of surface temperature and precipitation. The combinations of schemes that include the Dudhia shortwave radiation scheme or the Purdue Lin microphysics module, or the Grell-Devenyi cumulus parameterization lead to a worse performance for predictions of downward shortwave radiation flux, temperature, and specific humidity, as compared with those with respective alternative schemes. The physical option with the Purdue Lin microphysics module leads to a worse performance for precipitation predictions. The projected climate in 2050 indicates a warmer and drier climate, which may have important impacts on the fate and lifetime of air pollutants.

Cite this paper
Y. Zhang, J. Hemperly, N. Meskhidze and W. Skamarock, "The Global Weather Research and Forecasting (GWRF) Model: Model Evaluation, Sensitivity Study, and Future Year Simulation," Atmospheric and Climate Sciences, Vol. 2 No. 3, 2012, pp. 231-253. doi: 10.4236/acs.2012.23024.
References
[1]   W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang and J. G. Powers, “A Description of the Advanced Research WRF Version 2,” National Center for Atmospheric Research Technical Note, NCAR, 2007. http://www.mmm.ucar.edu/wrf/users/docs/arw_v2.pdf

[2]   W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y. Huang, W. Wang and J. G. Powers, “A Description of the Advanced Research WRF Version 3,” National Center for Atmospheric Research Technical Note, NCAR, Boulder, 2008. http://www.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf

[3]   Y. V. R. Rao, H. R. Hatwar, A. K. Salah and Y. Sudhakar, “An Experiment Using the High Resolution Eta and WRF Models to Forecast Heavy Precipitation over India,” Pure and Applied Geophysics, Vol. 164, No. 8-9, 2007, pp. 1593-1615. doi:10.1007/s00024-007-0244-1

[4]   H. Wang, W. C. Skamarock and G. Feingold, “Evaluation of Scalar Advection Schemes in the Advanced Research WRF Model Using Large-Eddy Simulations of Aerosol-Cloud Interaction,” Monthly Weather Review, Vol. 137, No. 8, 2009, pp. 2547-2558. doi:10.1175/2009MWR2820.1

[5]   W. C. Skamarock and J. B. Klemp, “A Time-Split NonHydrostatic Atmospheric Model for Research and NWP Applications,” Journal of Computational Physics: Special Issue on Environmental Modeling, Vol. 227, No. 7, 2008, pp. 3465-3485.

[6]   X.-G. Wang, D. M. Barker, C. Snyder and T. M. Hamill, “A Hybrid ETKF—3DVAR Data Assimilation Scheme for the WRF Model. Part I: Observing System Simulation Experiment,” Monthly Weather Review, Vol. 136, No. 12, 2008, pp. 5116-5131. doi:10.1175/2008MWR2444.1

[7]   X.-Y. Huang, et al., “Four-Dimensional Variational Data Assimilation for WRF: Formulation and Preliminary Results,” Monthly Weather Review, Vol. 137, No. 1, 2009, pp. 299-314. doi:10.1175/2008MWR2577.1

[8]   L. R. Leung, Y.-H. Kuo and J. Tribbia, “Research Needs and Directions of Regional Climate Modeling Using WRF and CCSM,” Bulletin of the American Meteorological Society, Vol. 87, No. 12, 2006, pp. 1747-1751. doi:10.1175/BAMS-87-12-1747

[9]   X.-Z. Liang, M. Xu, K. E. Kunkel, G. A. Grell and J. S. Kain, “Regional Climate Model Simulation of US Mexico Summer Precipitation Using the Optimal Ensemble of Two Cumulus Parameterizations,” Journal of Climate, Vol. 20, No. 20, 2007, pp. 5201-5207. doi:10.1175/JCLI4306.1

[10]   M. S. Bukovsky and D. J. Karoly, “Precipitation Simulations Using WRF as a Nested Regional Climate Model,” Journal of Climate and Applied Meteorology, Vol. 48, No. 10, 2009, pp. 2152-2159. doi:10.1175/2009JAMC2186.1

[11]   L. R. Leung and Y. Qian, “Atmospheric Rivers Induced Heavy Precipitation and Flooding in the Western US Simulated by the WRF Regional Climate Model,” Geophysical Research Letters, Vol. 36, 2009, Article ID L03820.

[12]   C. Zhao, X. Liu, L. Y. R. Leung and S. M. Hagos, “Radiative Impact of Mineral Dust on Monsoon Precipitation Variability over West Africa,” Atmospheric Chemistry and Physics, Vol. 11, No. 5, 2011, pp. 1879-1893. doi:10.5194/acp-11-1879-2011

[13]   G. A. Grell, S. E. Peckham, R. Schmitz, S. A. McKeen, G. Frost, W. C. Skamarock and B. Eder, “Fully Coupled Online ‘Chemistry’ Within the WRF Model,” Atmospheric Environment, Vol. 39, No. 37, 2005, pp. 6957- 6975. doi:10.1016/j.atmosenv.2005.04.027

[14]   J. D. Fast Jr., W. I. Gustafson, R. C. Easter, R. A. Zaveri, J. C. Barnard, E. G. Chapman and G. A. Grell, “Evolution of Ozone, Particulates, and Aerosol Direct Forcing in an Urban Area Using a New Fully-Coupled Meteorology, Chemistry, and Aerosol Model,” Journal of Geophysical Research, Vol. 111, 2006, Article ID D21305. doi:10.1029/2005JD006721

[15]   E. G .Chapman Jr., W. I. Gustafson, R. C. Easter, J. C. Barnard, S. J. Ghan, M. S. Pekour and J. D. Fast, “Coupling Aerosol-Cloud-Radiative Processes in The WRF- Chem Model: Investigating the Radiative Impact of Ele- vated Point Sources,” Atmospheric Chemistry Physics, Vol. 9, 2009, pp. 945-964. doi:10.5194/acp-9-945-2009

[16]   C. Misenis and Y. Zhang, “An Examination of WRF/ Chem: Physical Parameterizations, Nesting Options, and Grid Resolutions,” Atmospheric Research, Vol. 97, No. 3, 2010, pp. 315-334. doi:10.1016/j.atmosres.2010.04.005

[17]   Y. Zhang, X.-Y. Wen and C. J. Jang, “Simulating Climate-Chemistry-Aerosol-Cloud-Radiation Feedbacks in Continental US Using Online-Coupled Weather Research Forecasting Model with Chemistry (WRF/Chem),” At- mospheric Environment, Vol. 44, No. 29, 2010, pp. 3568- 3582. doi:10.1016/j.atmosenv.2010.05.056

[18]   Y. Zhang, Y. Pan, K. Wang, J. D. Fast and G. A. Grell, “WRF/Chem-Madrid: Incorporation of an Aerosol Module into WRF/Chem and Its Initial Application to the TexAQS2000 Episode,” Journal of Geophysical Research, Vol. 115, 2010, Article ID D18202. doi:10.1029/2009JD013443

[19]   S. McKeen, J. Wilczak, G. Grell, I. Djalalova, S. Peckham, E.-Y. Hsie, W. Gong, V. Bouchet, S. Menard, R. Moffet, J. McHenry, J. McQueen, Y. Tang, G. R. Carmichael, M. Pagowski, A. Chan, T. Dye, G. Frost, P. Lee and R. Mathur, “Assessment of an Ensemble of Seven Real-Time Ozone Forecasts over Eastern North America during the Summer of 2004,” Journal of Geophysical Research, Vol. 110, 2005, Article ID: D21307. doi:10.1029/2005JD005858

[20]   S. Mckeen, S. H. Chung, J. Wilczak, G. Grell, I. Djalalova, S. Peckhamm, W. Gong, V. Bouchet, R. Moffet, Y. Tang, G. R. Carmichael, R. Mathur and S. Yu, “Evaluation of Several PM2.5 Forecast Models Using Data Collected during the ICARTT/NEAQS 2004 Field Study,” Journal of Geophysical Research, Vol. 112, 2007, Article ID D10S20. doi:10.1029/2006JD007608

[21]   L. D. Monache, J. Wilczak, S. McKeen, G. Grell, M. Pagowski, S. Peckham, R. Stoll, J. McHenry, and J. McQueen, “A Kalman-Filter Bias Correction Method Applied to Deterministic, Ensemble Averaged, and Probabilistic Forecasts of Surface Ozone,” Tellus, Vol. 60, No. 2, 2007. doi:10.1111/j.1600-0889.2007.00332.x

[22]   M.-T. Chuang, Y. Zhang and D. Kang, “Application of WRF/Chem-Madrid for Real-Time Air Quality Forecasting over the Southeastern United States,” Atmospheric Environment, Vol. 45, No. 34, 2011, pp. 6241-6250. doi:10.1016/j.atmosenv.2011.06.071

[23]   S. Chen, J. F. Price, W. Zhao, M. A. Donelan and E. J. Walsh, “The CBLAST-Hurricane Program and the Next- Generation Fully Coupled Atmosphere-Wave-Ocean Models for Hurricane Research and Prediction, March,” Bulletin of the American Meteorological Society, Vol. 88, No. 3, 2007, pp. 311-317. doi:10.1175/BAMS-88-3-311

[24]   B. Liu, H.-Q. Liu, L. Xie, C.-L. Guan and D.-L. Zhao, “A Coupled Atmosphere-Wave-Ocean Modeling System: Simulation of the Intensity of an Idealized Tropical Cyclone,” Monthly Weather Review, Vol. 139, No. 1, 2011, pp. 132-152. doi:10.1175/2010MWR3396.1

[25]   M. I. Richardson, A. D. Toigo and C. E. Newman, “Non- Conformal Projection, Global, and Planetary Versions of WRF,” 6th WRF/15th MM5 User’s Workshop, Boulder, 27-30 June 2005.

[26]   M. I. Richardson, A. D. Toigo and C. E. Newman, “Planet WRF: A General Purpose, Local to Global Numerical Model for Planetary Atmosphere and Climate Dynamics,” Journal of Geophysical Research, Vol. 112, 2007, Article ID E09001. doi:10.1029/2006JE002825

[27]   M. A. Mischna, M. Allen, M. I. Richardson, C. E. Newman and A. D. Toigo, “Atmospheric Modeling of Mars Methane Surface Releases,” Planetary and Space Science, Vol. 59, No. 2-3, 2011, pp. 227-237. doi:10.1016/j.pss.2010.07.005

[28]   W. D. Collins, et al., “Description of the NCAR Community Atmosphere Model (CAM 3.0),” National Center for Atmospheric Research Technical Note, NCAR, 2004.

[29]   E. J. Mlawer, S. J. Taubman, P. D. Brown, M. J. Iacono and S. A. Clough, “Radiative Transfer for Inhomogeneous Atmospheres: RRTM, a Validated Correlated-k Model for the Longwave,” Journal of Geophysical Research, Vol. 102, No. D14, 1997, pp. 16663-16682. doi:10.1029/97JD00237

[30]   M.-D. Chou and M. J. Suarez, “An Efficient Thermal Infrared Radiation Parameterization for Use in General Circulation Models,” NASA Technical Memorandum, Vol. 3, 1994, Article ID 104606.

[31]   M. D. Chou, M. J. Suarez, C. H. Ho, M. M. H. Yan and K. T. Lee, “Parameterizations for Cloud Overlapping and Shortwave Single-Scattering Properties for Use in General Circulation and Cloud Ensemble Models,” Journal of Climate, Vol. 11, No. 2, 1998, pp. 202-214. doi:10.1175/1520-0442(1998)011<0202:PFCOAS>2.0.CO;2

[32]   J. Dudhia, “Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model,” Journal of Atmospheric Sciences, Vol. 46, No. 20, 1989, pp. 3077-3107. doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2

[33]   Y.-L. Lin, R. D. Farley and H. D. Orville, “Bulk Parameterization of the Snow Field in a Cloud Model,” Journal of Climate and Applied Meteorology, Vol. 22, No. 6, 1983, pp.1065-1092. doi:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2

[34]   S.-H. Chen and W.-Y. Sun, “A One-Dimensional Time Dependent Cloud Model,” Journal of the Meteorological Society of Japan, Vol. 80, No. 1, 2002, pp. 99-118. doi:10.2151/jmsj.80.99

[35]   K.-S. Lim and S.-Y. Hong, “A New Double Moment Approach for the Warm-Rain Process Based on the WSM6 Scheme (WDM6),” The 9th WRF User’s Workshop, Boulder, 23-27 June 2008.

[36]   F. Chen and J. Dudhia, “Coupling an Advanced Land Surface-Hydrology Model with the Penn State-NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity,” Monthly Weather Review, Vol. 129, No. 4, 2001, pp. 569-585. doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2

[37]   F. Chen and J. Dudhia, “Coupling an Advanced Land Surface-Hydrology Model with the Penn State-NCAR MM5 Modeling System. Part II: Preliminary Model Validation,” Monthly Weather Review, Vol. 129, No. 4, 2001, pp. 587-604. doi:10.1175/1520-0493(2001)129<0587:CAALSH>2.0.CO;2

[38]   M. B. Ek, K. B. Mitchell, Y. Lin, B. Rogers, P. Grunmann, V. Koren, G. Gayno and J. D. Tarpley, “Implementation of Noah Land Surface Model Advances in the National Centers for Environmental Prediction Operational Mesoscale Eta Model,” Journal of Geophysical Research, Vol. 108, 2003. doi:10.1029/2002JD003296

[39]   J. Dudhia, “A Multi-Layer Soil Temperature Model for MM5,” Sixth PSU/NCAR Mesoscale Model Users’ Workshop, Boulder, 22-24 July 1996, pp. 49-50.

[40]   J. S. Kain and J. M. Fritsch, “A One Dimensional Entraining/Detraining Plume Model and Its Application in Convective Parameterization,” Journal of Atmospheric Sciences, Vol. 47, No. 23, 1990, pp. 2784-2802. doi:10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2

[41]   J. S. Kainand and J. M. Fritsch, “Convective Parameterization for Mesoscale Models: The Kain-Fritsch Scheme,” In: J. S. Kainand and J. M. Fritsch, Eds., The Representation of Cumulus Convection in Numerical Models, American Meteorological Society, Boston, 1993, pp. 165-170.

[42]   J. S. Kain, “The Kain-Fritsch Convective Parameterization: An Update,” Journal of Applied Meteorology, Vol. 43, No. 1, 2004, pp. 170-181. doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2

[43]   G. A. Grell and D. Devenyi, “A Generalized Approach to Parameterizing Convection Combining Ensemble and Data Assimilation Techniques,” Geophysical Research Letters, Vol. 29, 2002, pp. 1693-1696. doi:10.1029/2002GL015311

[44]   S.-Y. Hong and J. Dudhia, “Testing of a New Non-Local Boundary Layer Vertical Diffusion Scheme in Numerical Weather Prediction Applications,” The 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, 10-12 January 2004.

[45]   S. Hong, Y. Noh and J. Dudhia, “A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes,” Monthly Weather Review, Vol. 134, No. 9, 2006, pp. 2318-2341. doi:10.1175/MWR3199.1

[46]   S.-Y. Hong, S.-W. Kim, J. Dudhia and M.-S. Koo, “Stable Boundary Layer Mixing in a Vertical Diffusion Pack- age,” The 9th Annual of WRF Workshop, Boulder, 23-27 June 2008.

[47]   A. S. Monin, and A. M. Obukho, “Basic Laws of Turbulent Mixing in the Surface Layer of the Atmosphere,” Contributions of the Geophysical Institute of the Academy of Sciences, Vol. 24, No. 151, 1954, pp. 163-187.

[48]   D.-L. Zhang and R. A. Anthes, “A High-Resolution Model of the Planetary Boundary Layer-Sensitivity Tests and Comparisons with SESAME-79 Data,” Journal of Applied Meteorology, Vol. 21, No. 11, 1982, pp. 1594-1609.

[49]   C. A. Paulson, “The Mathematical Representation of Wind Speed and Temperature Profiles in the Unstable Atmospheric Surface Layer,” Journal of Applied Meteorology, Vol. 9, No. 6, 1970, pp. 857-861. doi:10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2

[50]   A. J. Dyer and B. B. Hicks, “Flux-Gradient Relationships in the Constant Flux Layer,” Quarterly Journal of the Royal Meteorological Society, Vol. 96, No. 410, 1970, pp. 715-721. doi:10.1002/qj.49709641012

[51]   E. K. Webb, “Profile Relationships: The Log-Linear Range, and Extension to Strong Stability,” Quarterly Journal of the Royal Meteorological Society, Vol. 96, No. 407, 1970, pp. 67-90. doi: 10.1002/qj.49709640708

[52]   A. Ohmura, et al., “Baseline Surface Radiation Network (BSRN/WCRP): New Precision Radiometry for Climate,” Bulletin of the American Meteorological Society, Vol. 79, No. 10, 1998, pp. 2115-2136. doi:10.1175/1520-0477(1998)079<2115:BSRNBW>2.0.CO;2

[53]   P. Xie and P. Arkin, “Global Precipitation: A 17-Year Monthly Analysis Based on Gauge Observations, Satellite Estimates, and Numerical Model Outputs,” Bulletin of the American Meteorological Society, Vol. 78, No. 11, 1997, pp. 2539-2558. doi:10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2

[54]   E. Kalnay, et al., “The NCEP/NCAR 40-Year Reanalysis Project,” Bulletin of the American Meteorological Society, Vol. 77, No. 3, 1996, pp. 437-471. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

[55]   Y. Zhang, P. Liu, B. Pun and C. Seigneur, “A Comprehensive Performance Evaluation of MM5-CMAQ for the Summer 1999 Southern Oxidants Study Episode, Part-I. Evaluation Protocols, Databases and Meteorological Pre- dictions,” Atmospheric Environment, Vol. 40, No. 26, 2006, pp. 4825-4838. doi:10.1016/j.atmosenv.2005.12.043

[56]   M. Wild, A. Ohmura, H. Gilgen and E. Roeckner, “Validation of General Circulation Model Radiative Fluxes Using Surface Observations,” Journal of Climate, Vol. 8, No. 5, 1995, pp. 1309-1324. doi:10.1175/1520-0442(1995)008<1309:VOGCMR>2.0.CO;2

[57]   J. H. Christensen, B. Hewitson, A. Busuioc, A. Chen, X. Gao, I. Held, R. Jones, R. K. Kolli, W.-T. Kwon, R. Laprise, V. M. Rueda, L. Mearns, C. G. Menéndez, J. R?i- s?nen, A. Rinke, A. Sarr and P. Whetton, “Regional Cli- mate Projections,” In: S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H. L. Miller, Eds., Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Ca

[58]   S. J. Lambert and G. J. Boer, “CMIP1 Evaluation and Intercomparison of Coupled Climate Models,” Climate Dynamics, Vol. 17, No. 2-3, 2001, pp. 83-106. doi:10.1007/PL00013736

[59]   D. Bader, “An Appraisal of Coupled Climate Model Simulations,” Lawrence Livermore National Laboratory, Livermore, 2004.

[60]   D. A. Randall, R. A. Wood, S. Bony, R. Colman, T. Fichefet, J. Fyfe, V. Kattsov, A. Pitman, J. Shukla, J. Srinivasan, R. J. Stouffer, A. Sumi and K.E. Taylor, “Climate Models and Their Evaluation,” In: S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H. L. Miller, Eds., Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cam- bridge, 200

[61]   C. Covey, K. M. AchutaRao, U. Cubasch, P. Jones, S. J. Lambert, M. E. Mann, T. J. Phillips and K. E. Taylor, “An Overview of Results from the Coupled Model Inter-comparison Project (CMIP),” Global and Planetary Change, Vol. 37, No. 1-2, 2003, pp. 103-133. doi:10.1016/S0921-8181(02)00193-5

[62]   A. J. G. Baumgaertner, P. J?ckel, M. Dameris and P. J. Crutzen, “Will Climate Change Increase Ozone Depletion Fromlow-Energy-Electron Precipitation?” Atmospheric Chemistry and Physics, Vol. 10, 2010, pp. 9647-9656. doi:10.5194/acp-10-9647-2010.

[63]   Y. Zhang, P. Karamchandani, T. Glotfelty, D. G. Streets, W. C. Skamarock, G. Grell, A. Nenes, F.-Q. Yu and R. Bennartz, “Development and Initial Application of the Global-through-Urban WRF/Chem,” Journal of Geophysical Research, 2012, in press.

[64]   T. Glotfelty, Y. Zhang, S. Zhu, P. Karamchandani and D. G. Streets, “Assessing the Impact of Changes in Climate and Emission on Global Air Quality,” The 11th Annual CMAS Conference, Chapel Hill, 15-17 October, 2012.

[65]   S.-Y. Hong, J. Dudhia and S.-H. Chen, “A Revised Approach to Ice Microphysical Processes for the Bulk Parameterization of Clouds and Precipitation,” Monthly Weather Review, Vol. 132, No. 1, 2004, pp. 103-120. doi:10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2

[66]   S.-Y. Hong and J. O. Lim, “The WRF Single Moment 6- Class Microphysics Scheme (WSM6),” Journal of the Korean Meteorology Society, Vol. 42, No. 2, 2006, pp. 129-151.

 
 
Top