OJMH  Vol.2 No.3 , July 2012
Hydraulic Geometry, Hydraulics and Sediment Properties of Forest Brooks after Extensive Erosion from Upland Peatland Drainage
Peatland drainage can affect headwater systems, causing changes in bed substrate composition and hydraulic geome-try in small brooks. We studied hydraulic geometry and sediment properties in 14 boreal forest brook reaches (width < 2 m), characterised by well-vegetated banks, high sinuosity and low width-to-depth ratio, in north-east Finland. The aims were to obtain information from channel geometry and to study brook response to extensive sediment load from land use. The results indicate that bed sediment in brooks is almost continuously mobile, which negatively reflect to ecological status of the brooks. These headwater meandering parts have limited sediment transport capacity and require a long period to recover from artificially increased sediment input from peat drainage. However, different reaches can be prioritised for restoration according to the characteristics of silted bed sediment or sediment origins. Brook width appeared to have large natural variation, causing great local velocity variations. This needs to be taken into consideration when restoring straightened reaches in small headwater areas, e.g., width in restored reaches cannot be uniform but should include variations.

Cite this paper
H. Marttila, S. Tammela and B. Kløve, "Hydraulic Geometry, Hydraulics and Sediment Properties of Forest Brooks after Extensive Erosion from Upland Peatland Drainage," Open Journal of Modern Hydrology, Vol. 2 No. 3, 2012, pp. 59-69. doi: 10.4236/ojmh.2012.23008.

[1]   J. L. Meyer and J. B. Wallace, “Lost Linkages and Lotic Ecology: Rediscovering Small Streams,” In: M. C. Press, N. J. Huntly and S Levin, Eds., Ecology: Achievement and Challenge, Blackwell Scientific, Oxford, 2001, pp. 295-317.

[2]   K. Virtanen, P. H?nninen, R.-L. Kallinen, S. Vartiainen, T. Herranen and R. Jokisaari, “Suomen Turvevarat 2000 (The Peat Reserves of Finland in 2000),” Geological Survey of Finland, Report of Investigation, Espoo, 2003, p. 156.

[3]   H. Marttila and B. Kl?ve, “Dynamics of Suspended Sediment Transport and Erosion in a Drained Peatland Forestry Catchment,” Journal of Hydrology, Vol. 388, No. 34, 2010, pp. 414-425. doi:10.1016/j.jhydrol.2010.05.026

[4]   S. Joensuu, “Effects of Ditch Network Maintenance and Sedimentation Ponds on Export Loads of Suspended Solids and Nutrients from Peatland Forests,” Finnish Forest Research Institute, Research Papers 868, 2002.

[5]   T. Mattsson, L. Finér, P. Kortelainen and T. Sallantaus, “Brook Water Quality and Background Leaching from Unmanaged Forested Catchments in Finland,” Water, Air, and Soil Pollution, Vol. 147, No. 1-4, 2003, pp. 275-297. doi:10.1023/A:1024525328220

[6]   F. J. Triska, V. C. Kennedy, R. J. Avanzino, G. W. Zellweger and K. E. Bencala, “Retention and Transport of Nutrients in a Third-Order Stream in Northwestern California: Hyporheic Processes,” Ecology, Vol. 70, No. 6, 1989, pp. 1893-1905. doi:10.2307/1938120

[7]   P. J. Whiting, J. F. Stamm, D. B. Moog and R. L. Orndorff, “Sediment-Transporting Flows in Headwater Streams,” Geological Society of America Bulletin, Vol. 111, No. 3, 1999, pp. 450-466. doi:10.1130/0016-7606(1999)111<0450:STFIHS>2.3.CO;2

[8]   S. M. Wondzell and F. J. Swanson, “Floods, Channel Change, and the Hyporheic Zone,” Water Resources Research, Vol. 35, No. 2, 1999, pp. 555-567. doi:10.1029/1998WR900047

[9]   T. Dogwiler and C. M. Wicks, “Sediment Entrainment and Transport in Fluviokarst Systems,” Journal of Hydrology, Vol. 295, No. 1-4, 2004, pp. 163-172. doi:10.1016/j.jhydrol.2004.03.002

[10]   E. W. Peterson, T. B. Sickbert and S. L. Moore, “High Frequency Stream Bed Mobility of a Low-Gradient Agricultural Stream with Implications on the Hyporheic Zone,” Hydrological Processes, Vol. 22, No. 21, 2008, pp. 4239-4248. doi:10.1002/hyp.7031

[11]   A. St-Hilaire, D. Caissie, R. A. Cunjak and G. Bourgeois, “Streambed Sediment Composition and Deposition in a Forested Stream: Spatial and Temporal Analysis,” River Research and Applications, Vol. 21, No. 8, 2005, pp. 883-898. doi:10.1002/rra.860

[12]   L. B. Leopold and T. Maddock Jr., “The Hydraulic Geometry of Stream Channels and Some Physiographic Implications,” US Geological Survey Professional Paper 252, 1953.

[13]   R. R. De Rose, M. J. Stewardson and C. Harman, “Downstream Hydraulic Geometry of Rivers in Victoria, Australia,” Geomorphology, Vol. 99, No. 1-4, 2008, pp. 302316. doi:10.1016/j.geomorph.2007.11.008

[14]   G.S. Ridenour, “Compositional Data Analysis of the Influence of Drainage Area and Stream Order on Hydraulic Geometry,” Proceedings of the IV International Conference on GeoComputation, Fredericksburg, 25-28 July 1999.

[15]   S. Hyv?nen, M. Suanto, P.-L. Luhta, T. Yrj?n? and E. Moilanen, “Stream Inventories in the River Ii-joki Catchment Area during 1998-2003 (Regional Environmental Publications),” Tornion Kirjapaino, 2005.

[16]   L. B. Leopold, “A View of the River,” Harvard University Press, Cambridge, 1994.

[17]   EPA, “Sediment Sampling Quality Assurance User’s Guide,” Environmental Monitoring System Laboratory, Las Vegas, 1985.

[18]   D. A. Braatz and T. L. Randall, “A New Series of Sediment Collectors for Developing Bed Load Sediment Budgets and Restoring Streams,” International Symposium on Sediment Budgets, Foz do Igua?o, No. 291, 2005, pp. 222-226.

[19]   V. T. Chow, “Open-Channel Hydraulics,” McGraw-Hill Book Co., New York, 1959.

[20]   G. J. Arcement and V. R. Schneider, “Guide for Selecting Manning’s Roughness Coefficients for Natural Channels and Floodplains,” US Geological Survey Water Supply Paper 2339, 1989.

[21]   M. S. Lorang and F. R. Hauer, “Flow Competence and Streambed Stability: An Evaluation of Technique and Application,” Journal of North American Benthological Society, Vol. 22, No. 4, 2003, pp. 475-491. doi:10.2307/1468347

[22]   V.R. Baker and D.F. Ritter, “Competence of Rivers to Transport Coarse Bedload Material,” Geological Society of America Bulletin, Vol. 86, No. 7, 1975, pp. 975-978. doi:10.1130/0016-7606(1975)86<975:CORTTC>2.0.CO;2

[23]   S.L. Dingman, “Fluvial Hydrology”, W. H. Freeman and Company, New York, 1984.

[24]   W. H. Graf, “Hydraulics of Sediment Transport,” Water Resources Publications, LLC., Colorado, 1984.

[25]   C. F. Rabeni and G. W. Minshall, “Factors Affecting Microdistribution of Stream Benthic Insects,” Oikos, Vol. 29, No. 1, 1977, pp. 33-43. doi:10.2307/3543290

[26]   G. Parker and P. C. Klingeman, “On Why Gravel Bed Streams Are Paved,” Water Resources Research, Vol. 18, No. 5, 1982, pp. 1409-1423. doi:10.1029/WR018i005p01409

[27]   Y. Nino, F. Lopez and M. Garcia, “Threshold for Particle Entrainment into Suspension,” Sedimentology, Vol. 50, No. 2, 2003, pp. 247-263. doi:10.1046/j.1365-3091.2003.00551.x

[28]   R. A. Bagnold, “Bed Load Transport by Natural Rivers,” Water Resources Research, Vol. 13, No. 2, 1977, pp. 303312. doi:10.1029/WR013i002p00303

[29]   R. A. Nanson, G. C. Nanson and H. Q. Huang, “The Hydraulic Geometry of Narrow and Deep Channels; Evidence for Flow Optimisation and Controlled Peatland Growth,” Geomorphology, Vol. 117, No. 1-2, 2010, pp. 143-154. doi:10.1016/j.geomorph.2009.11.021

[30]   J. R. Watters and E. H. Stanley, “Stream Channels in Peatlands: The Role of Biological Processes in Controlling Channel Form,” Geomorphology, Vol. 89, No. 1-2, 2007, pp. 97-110. doi:10.1016/j.geomorph.2006.07.015

[31]   H. Marttila and B. Kl?ve, “Erosion and Delivery of Deposited Peat Sediment,” Water Resources Research, Vol. 44, 2008, W06406, 10 p. doi:10.1029/2007WR006486

[32]   D. Knighton, “Fluvial Forms and Processes: A New Perspective,” Arnold, London, 1998.

[33]   J. C. Bathurst, “Flow Resistance through the Channel Network,” In: K. Beven and M. J. Kirkby, Eds., Channel Network Hydrology, John Wiley & Sons, Chichester, 1993, pp. 69-98.

[34]   A. W. Western, B. L. Finlayson, T. A. McMahon and I. C. O’Neill, “A Method for Characterising Longitudinal Irregularity in River Channels,” Geomorphology, Vol. 21, No. 1, 1997, pp. 39-51. doi:10.1016/S0169-555X(97)00023-8

[35]   T. Helmi?, “Hydraulic Geometry of Cohesive Lowland Rivers,” Boreal Environment Research, Vol. 9, 2004, pp. 243-251.

[36]   M. Kuuskoski, “Hydrauliikka,” In: S. Mustonen, Ed., Suo menRaken nusinsi n??riliiton julkaisusarja 67., Maaja vesirakennus, Vammalan kirjapaino, 1968.

[37]   L. Hosia, “Pienten Uomien Virtausvastuskerroin,” National Board of Waters, Finland, Report 199, Helsinki, 1980.

[38]   W. E. Dietrich, J. W. Kirchner, H. Ikeda and F. Iseya, “Sediment Supply and the Development of the Coarse Surface Layers in Gravel-Bed Rivers,” Nature, Vol. 340, 1989, pp. 215-217. doi:10.1038/340215a0

[39]   M. Church, “Geomorphic Thresholds in Riverine Landscapes,” Freshwater Biology, Vol. 47, No. 4, 2002, pp. 541-557. doi:10.1046/j.1365-2427.2002.00919.x

[40]   D. A. Sear, “River Restoration and Geomorphology,” Aquatic Conservation: Marine and Freshwater Ecosystems, Vol. 4, No. 2, 1994, pp.169-177.

[41]   D. A. Sear, M. D. Newson, C. Hill, J. Old and J. Branson, “A Method for Applying Fluvial Geomorphology in Support of Catchment-Scale River Restoration Planning,” Aquatic Conservation: Marine and Freshwater Ecosystems, Vol. 19, No. 5, 2009, pp. 506-519. doi:10.1002/aqc.1022

[42]   M. Ahtiainen and P. Huttunen, “Long-Term Effects of Forestry Managements on Water Quality and Loading in Brooks,” Boreal Environment Research, Vol. 4, 1999, pp. 101-114.

[43]   S. Joensuu, E. Ahti and M. Vuollekoski, “Discharge Water Quality from Old Ditch Networks in Finnish Peatland Forests,” Suo-Mires, Vol. 52, No. 1, 2001, pp. 1-15.

[44]   M. Rask, K. Nyberg, S.-L. Markkanen and A. Ojala, “Forestry in Catchments: Effects on Water Quality, Plankton, Zoobenthos and Fish in Small Lakes,” Boreal Environment Research, Vol. 3, 1998, pp. 75-86.

[45]   A. Laine and K. Heikkinen, “Peat Mining Increasing Fine-Grained Organic Matter on the Riffle Beds of Boreal Streams,” Archiv fur Hydrobiologie, Vol. 148, No. 1, 2000, pp. 9-24.

[46]   A. Laine, “Effects of Peatland Drainage on the Size and Diet of Yearling Salmon in a Humic Northern River,” Archiv für Hydrobiologie, Vol. 151, 2001, pp. 83-99.