MSA  Vol.3 No.7 , July 2012
Study of a Model Humic Acid-type Polymer by Fluorescence Spectroscopy and Atomic Force Microscopy
ABSTRACT
A model HA-type polymer of para-benzoquinone synthetic humic acid (SHA) and its complexes with copper, iron and manganese metal ions were studied using atomic force microscopy (AFM). Natural humic acids (HA) and synthetic humic acids (SHA) were examined by fluorescence spectroscopy, which indicated similarity of SHA and HA spectra. The AFM images of SHA and its complexes revealed variable morphologies, such as small spheres, aggregates and a sponge-like structure. The SHA complexes displayed morphologies similar to those of natural HA. The presence of copper, iron and manganese ions led to the formation of aggregate-type structures in an apparent arrangement of smaller SHA particles.

Cite this paper
M. Barriquello, F. Leite, D. Deda, S. Saab, N. Consolin-Filho, M. Piza and L. Martin-Neto, "Study of a Model Humic Acid-type Polymer by Fluorescence Spectroscopy and Atomic Force Microscopy," Materials Sciences and Applications, Vol. 3 No. 7, 2012, pp. 478-484. doi: 10.4236/msa.2012.37067.
References
[1]   F. F. J. Stevenson, “Humus Chemistry: Genesis, Compo- sition, Reactions,” John Wiley and Sons, New York, 1994.

[2]   K. Ramus, F. D. Kopinke and A. Georgi, “Influence of Dissolved Humic Substances on the Mass Transfer of Organic Compounds across the Air-Water Interface,” Chemosphere, Vol. 86, No. 2, 2012, pp. 138-143. doi:10.1016/j.chemosphere.2011.09.055

[3]   A. Piccolo and P. Conte, “Molecular Size of Humic Sub- stances. Supramolecular Associations versus Macromo- lecular Polymers,” Advances in Environmental Research, Vol. 3, No. 4, 2000, pp. 508-521.

[4]   A. Piccolo, S. Nardi and G. Concheri, “Micelle-Like Con- formation of Humic Substances as Revealed by Size Ex- clusion Chromatography,” Chemosphere, Vol. 33, No. 4, 1996, pp. 595-602. doi:10.1016/0045-6535(96)00210-X

[5]   A. Piccolo, S. Nardi and G. Concheri, “Macromolecular Changes of Humic Substances Induced by Interaction with Organic Acids,” European Journal of Soil Science, Vol. 47, No. 3, 1996, pp. 319-328. doi:10.1111/j.1365-2389.1996.tb01405.x

[6]   C. M. Favoretto, D. Goncalves, D. Milori, J. A. Rosa, W. C. Leite, A. M. Brinatti and S. D. Saab, “Determination of Humification Degree of Organic Matter of an Oxisol and of Its Organo-Mineral Fractions,” Quimica Nova, Vol. 31, No. 8, 2008, pp. 1994-1996. doi:10.1590/S0100-40422008000800015

[7]   K. Kalbitz, W. Geyer and S. Geyer, “Spectroscopic Prop- erties of Dissolved Humic Substances—A Reflection of land Use History in a Fen Area,” Biogeochemistry, Vol. 47, No. 2, 1999, pp. 219-238. doi:10.1007/BF00994924

[8]   D. Milori, L. Martin-Neto, C. Bayer, J. Mielniczuk and V. S. Bagnato, “Humification Degree of Soil Humic Acids Determined by Fluorescence Spectroscopy,” Soil Science, Vol. 167, No. 11, 2002, pp. 739-749. doi:10.1097/00010694-200211000-00004

[9]   A. Zsolnay, E. Baigar, M. Jimenez, B. Steinweg and F. Saccomandi, “Differentiating with Fluorescence Spec- troscopy the Sources of Dissolved Organic Matter in Soils Subjected to Drying,” Chemosphere, Vol. 38, No. 1, 1999, pp. 45-50. doi:10.1016/S0045-6535(98)00166-0

[10]   H. B. Yu, B. D. Xi, W. C. Ma, D. L. Li and X. S. He, “Fluorescence Spectroscopic Properties of Dissolved Fulvic Acids from Salined Flavo-aquic Soils around Wuliangsuhai in Hetao Irrigation District, China,” Soil Science Society of America Journal, Vol. 75, No. 4, 2011, pp. 1385-1393. doi:10.2136/sssaj2010.0373

[11]   L. T. Shirshova, A. L. Kholodov, B. N. Zolotareva, L. A. Fominykh and A. M. Yermolayev, “Fluorescence Spec- troscopy Studies of Humic Substance Fractions Isolated from Permanently Frozen Sediments of Yakutian Coastal Lowlands,” Geoderma, Vol. 149, No. 1-2, 2009, pp. 116- 123. doi:10.1016/j.geoderma.2008.11.026

[12]   J. J. Alberts and M. Takacs, “Comparison of the Natural Fluorescence Distribution among Size Fractions of Ter- restrial Fulvic and Humic Acids and Aquatic Natural Organic Matter,” Organic Geochemistry, Vol. 35, No. 10, 2004, pp. 1141-1149. doi:10.1016/j.orggeochem.2004.06.010

[13]   J. J. Alberts and M. Takacs, “Total Luminescence Spectra of IHSS Standard and Reference Fulvic Acids, Humic Acids and Natural Organic Matter: Comparison of Aquatic and Terrestrial Source Terms,” Organic Geochemistry, Vol. 35, No. 3, 2004, pp. 243-256. doi:10.1016/j.orggeochem.2003.11.007

[14]   N. Senesi, T. M. Miano, M. R. Provenzano and G. Bru- netti, “Characterization, Differentiation, and Classifica- tion of Humic Substances by Fluorescence Spectroscopy,” Soil Science, Vol. 152, No. 4, 1991, pp. 259-271. doi:10.1097/00010694-199110000-00004

[15]   P. MacCarthy, “Soil Sampling and Methods of Analisys,” CRC Press, Boca Raton, 2008.

[16]   D. W. Anderson and J. J. Schoenau, “Soil Humus Frac- tions,” In: M. R. Carter and E. G. Gregorich. Eds., Soil Sampling and Methods of Analisys, CRC Press, Boca Raton, 2007, pp. 675-680.

[17]   P. A. Maurice and K. Namjesnik-Dejanovic, “Aggregate Structures of Sorbed Humic Substances Observed in Aqueous Solution,” Environmental Science & Technology, Vol. 33, No. 9, 1999, pp. 1538-1541. doi:10.1021/es981113+

[18]   C. L. Chen, X. K. Wang, H. Jiang and W. P. Hu, “Direct Observation of Macromolecular Structures of Hurnic Acid by AFM and SEM,” Colloids and Surfaces a-Physico- chemical and Engineering Aspects, Vol. 302, No. 1-3, 2007, pp. 121-125.

[19]   F. L. Leite, A. Riul and P. S. P. Herrmann, “Mapping of Adhesion Forces on Soil Minerals in Air and Water by Atomic Force Spectroscopy (AFS),” Journal of Adhesion Science and Technology, Vol. 17, No. 16, 2003, pp. 2141- 2156. doi:10.1163/156856103772150751

[20]   I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Col- chero, J. Gomez-Herrero and A. M. Baro, “WSXM: A Software for Scanning Probe Microscopy and a Tool for Nanotechnology,” Review of Scientific Instruments, Vol. 78, No. 1, 2007, Article ID: 013705. doi:10.1063/1.2432410

[21]   F. Cataldo, “On the Structure of Macromolecules Ob- tained by Oxidative Polymerization of Polyhydroxyphenols and Quinones,” Polymer International, Vol. 46, No. 4, 1998, pp. 263-268. doi:10.1002/(sici)1097-0126(199808)46:4<263::aid-pi983>3.0.co;2-0

[22]   M. Schnitzer and S. U. Khan, “Soil Organic Matter,” El- sevier Scientific, Amsterdam, 1978.

[23]   N. Senesi, V. D’Orazio and G. Ricca, “Humic Acids in the First Generation of EUROSOILS,” Geoderma, Vol. 116, No. 3-4, 2003, pp. 325-344. doi:10.1016/S0016-7061(03)00107-1

[24]   M. Plaschke, J. Romer, R. Klenze and J. I. Kim, “Influ- ence of Europium(III) on the Adsorption of Humic Acid onto Mica Studied by AFM,” Surface and Interface Analysis, Vol. 30, No. 1, 2000, pp. 297-300. doi:10.1002/1096-9918(200008)30:1<297::AID-SIA789>3.0.CO;2-K

[25]   A. G. Liu, R. C. Wu, E. Eschenazi and K. Papadopoulos, “AFM on Humic Acid Adsorption on Mica,” Colloids and Surfaces a-Physicochemical and Engineering Aspects, Vol. 174, No. 1-2, 2000, pp. 245-252.

[26]   E. Balnois, K. J. Wilkinson, J. R. Lead, and J. Buffle, “Atomic Force Microscopy of Humic Substances: Effects of pH and Ionic Strength,” Environmental Science & Technology, Vol. 33, No. 21, 1999, pp. 3911-3917. doi:10.1021/es990365n

[27]   N. Pernodet, X. H. Fang, Y. Sun, A. Bakhtina, A. Rama- krishnan, J. Sokolov, A. Ulman and M. Rafailovich, “Adverse Effects of Citrate/Gold Nanoparticles on Hu- man Dermal Fibroblasts,” Small, Vol. 2, No. 6, 2006, pp. 766-773. doi:10.1002/smll.200500492

[28]   S. D. Saab, E. R. Carvalho, R. Bernardes, M. R. de Moura, L. Martin-Neto and L. H. C. Mattoso, “pH Effect in Aquatic Fulvic Acid from a Brazilian River,” Journal of the Brazilian Chemical Society, Vol. 21, No. 8, 2010, pp. 1490-1496. doi:10.1590/S0103-50532010000800012

[29]   M. Plaschke, J. Romer, R. Klenze and J. I. Kim, “In Situ AFM Study of Sorbed Humic Acid Colloids at Different pH,” Colloids and Surfaces a-Physicochemical and Engineering Aspects, Vol. 160, No. 3, 1999, pp. 269-279.

[30]   M. Baalousha, M. Motelica-Heino and P. Le Coustumer, “Conformation and Size of Humic Substances: Effects of Major Cation Concentration and Type, pH, Salinity, and Residence Time,” Colloids and Surfaces a-Physicochemical and Engineering Aspects, Vol. 272, No. 1-2, 2006, pp. 48-55.

[31]   S. Ghosh, H. Mashayekhi, B. Pan, P. Bhowmik and B. Xing, “Colloidal Behavior of Aluminum Oxide Nanopar- ticles as Affected by pH and Natural Organic Matter,” Langmuir, Vol. 24, No. 21, 2008, pp. 12385-12391. doi:10.1021/la802015f

 
 
Top