OJDM  Vol.2 No.3 , July 2012
Hamiltonian Cayley Digraphs on Direct Products of Dihedral Groups
We prove that a Cayley digraph on the direct product of dihedral groups D2n × D2m with outdegree two is Hamiltonian if and only if it is connected.

Cite this paper
G. Andruchuk, S. Gosselin and Y. Zeng, "Hamiltonian Cayley Digraphs on Direct Products of Dihedral Groups," Open Journal of Discrete Mathematics, Vol. 2 No. 3, 2012, pp. 88-92. doi: 10.4236/ojdm.2012.23016.
[1]   S. Curran and J. Gallian, “Hamiltonian Cycles and Paths in Cayley Graphs and Digraphs—A Survey,” Discrete Mathematics, Vol. 156, No. 1-3, 1996, pp. 1-18. doi:10.1016/0012-365X(95)00072-5

[2]   J. Gallian and D. Witte, “A Survey: Hamiltonian Cyles in Cayley Graphs,” Discrete Mathematics, Vol. 51, No. 3, 1984, pp. 293-304. doi:10.1016/0012-365X(84)90010-4

[3]   K. Kutnar and D. Maru?i?, “Hamilton Cycles and Paths in Vertex-Transitive Graphs—Current Directions,” Dicrete Mathematics, Vol. 309, No. 17, 2009, pp. 5491-5500. doi:10.1016/j.disc.2009.02.017

[4]   R. A. Rankin, “A Campanological Problem in Group Theory,” Proceedings of the Cambridge Philosophical Society, Vol. 44, No. 1, 1948, pp. 17-25. doi:10.1017/S030500410002394X

[5]   W. Gaschütz, “Zu Einem von B. H. und H. Neumann Gestellten Problem,” Mathematische Nachrichten, Vol. 14, No. 4-6, 1955, pp. 249-252. doi:10.1002/mana.19550140406