JMP  Vol.3 No.7 , July 2012
Theory of Zero-Resistance States Generated by Radiation in GaAs/AlGaAs
ABSTRACT
Mani observed zero-registance states similar to those quantum-Hall-effect states in GaAs/AlGaAs but without the Hall resistance plateaus upon the application of radiations [R. G. Mani, Physica E 22, 1 (2004)]. An interpretation is presented. The applied radiation excites “holes”. The condensed composite (c)-bosons formed in the excited channel create a superconducting state with an energy gap. The supercondensate suppresses the non-condensed c-bosons at the higher energy, but it cannot suppress the c-fermions in the base channel, and the small normal current accompanied by the Hall field yeilds a B-linear Hall resistivity.

Cite this paper
S. Fujita, K. Ito and A. Suzuki, "Theory of Zero-Resistance States Generated by Radiation in GaAs/AlGaAs," Journal of Modern Physics, Vol. 3 No. 7, 2012, pp. 546-552. doi: 10.4236/jmp.2012.37075.
References
[1]   R. G. Mani, J. H. Smet, K. von Klitzing, V. Narayanamurti, W. B. Johnson and V. Umansky, “Zero-Resistance States Induced by Electromagnetic-Wave Excitation in GaAs/AlGaAs Heterostructures,” Nature, Vol. 420, 2004, pp. 646-650. doi:10.1038/nature01277

[2]   R. G. Mani, “Zero-Resistance States Induced by Electromagnetic-Wave Excitation in GaAs/AlGaAs Hetero- structures,” Physica E, Vol. 22, 2004, pp. 1-6. doi:10.1016/j.physe.2003.11.204

[3]   R. R. Du, M. A. Zudov, C. L. Yang, Z. Q. Yuan, L. N. Pfeiffer and K. W. West, “Oscillatory and Vanishing Resistance States in Microwave Irradiated 2D Electron Systems,” In: Y. Wang, L. Engel and N. Bonesteel, Eds., High Magnetic Fields in Semiconductor Physics, World Scientific, Singapore, 2005, pp. 11-18. doi:10.1142/9789812701923_0001

[4]   D. C. Tsui, H. L. St?rmer and A. C. Gossard, “Two- Dimensional Magnetotransport in the Extreme Quantum Limit,” Physical Review Letters, Vol. 48, 1982, pp. 1559- 1562. doi:10.1103/PhysRevLett.48.1559

[5]   M. A. Zudov, R. R. Du, L. N. Pfeiffer and K.W. West, “Evidence for a New Dissipationless Effect in 2D Electronic Transport,” Physical Review Letters, Vol. 90, 2003, Article ID: 046807. doi:10.1103/PhysRevLett.90.046807

[6]   R. G. Mani, V. Narayanamurti, K. von Klitzing, J. H. Smet, W. B. Johnson and V. Umansky, “Radiation-In- duced Oscillatory Hall Effect in Highmobility GaAs/ AlxGa1 xAs devices,” Physical Review B, Vol. 69, 2004, Article ID: 161306. doi:10.1103/PhysRevB.69.161306

[7]   J. C. Phillips, “Microscopic Origin of Collective Exponentially Small Resistance States,” Solid State Communications, Vol. 127, No. 3, 2003, pp. 233-236. doi:10.1016/S0038-1098(03)00350-8

[8]   A. V. Andreev, I. L. Aleiner and A. J. Millis, “Dynamical Symmetry Breaking as the Origin of the Zero-dc-Resistance State in an ac-Driven System,” Physical Review Letters, Vol. 91, No. 5, 2003, Article ID: 056803. doi:10.1103/PhysRevLett.91.056803

[9]   A. C. Durst, S. Sachdev, N. Read and S. M. Girvin, “Radiation-Induced Magnetoresistance Oscillations in a 2D Electron Gas,” Physical Review Letters, Vol. 91, No. 8, 2003, Article ID: 086803. doi:10.1103/PhysRevLett.91.086803

[10]   J. Shi and X. C. Xie, “Radiation-Induced Zero-Resistance State and the Photon-Assisted Transport,” Physical Review Letters, Vol. 91, No. 8, 2003, Article ID: 086801. doi:10.1103/PhysRevLett.91.086801

[11]   F. S. Bergeret, B. Huckestein and A. F. Volkov, “Current- Voltage Characteristics and the Zero-Resistance State in a Two-Dimensional Electron Gas,” Physical Review B, Vol. 67, 2003, Article ID: 241303. doi:10.1103/PhysRevB.67.241303

[12]   S. Fujita, S. Godoy and D. Nguyen, “Bloch Electron Dynamics,” Foundation of Physics, Vol. 25, No. 8, 1995, pp. 1209-1220. doi:10.1007/BF02055258

[13]   J. Bardeen, L. N. Cooper and J. R. Schrieffer, “Theory of Superconductivity,” Physical Review, Vol. 108, No. 5, 1957, pp. 1175-1204. doi:10.1103/PhysRev.108.1175

[14]   S. Fujita, Y. Tamura and A. Suzuki, “Microscopic Theory of the Quantum Hall Effect,” Modern Physics Letters B, Vol. 15, No. 20, 2001, pp. 817-825. doi:10.1142/S0217984901002610

[15]   R. B. Laughlin, “Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionally Charged Excitations,” Physical Review Letters, Vol. 50, No. 18, 1983, pp. 1395-1398. doi:10.1103/PhysRevLett.50.1395

[16]   F. D. M. Haldane, “Fractional Quantization of the Hall Effect: A Hierarchy of Incompressible Quantum Fluid States,” Physical Review Letters, Vol. 51, No. 7, 1983, pp. 605-608. doi:10.1103/PhysRevLett.51.605

[17]   J. K. Jain, “Composite-Fermion Approach for the Fractional Quantum Hall Effect,” Physical Review Letters, Vol. 63, No. 2, 1989, pp. 199-202. doi:10.1103/PhysRevLett.63.199

[18]   J. K. Jain, “Incompressible Quantum Hall States,” Physical Review B, Vol. 40, No. 11, 1989, pp. 8079-8082. doi:10.1103/PhysRevB.40.8079

[19]   J. K. Jain, “Theory of the Fractional Quantum Hall effect,” Physical Review B, Vol. 41, No. 11, 1990, pp. 7653- 7665. doi:10.1103/PhysRevB.41.7653

[20]   R. E. Prange and S. M. Girvin, “The Quantum Hall Effect,” 2nd Edition, Springer-Verlag, New York, 1990.

[21]   Z. F. Ezawa, “Quantum Hall Effects,” World Scientific, Singapore, 2000.

[22]   M. Stone, “Quantum Hall Effect,” World Scientific, Singapore, 1992.

[23]   T. Chakraborty and P. Pietilainen, “Quantum Hall Effects,” 2nd Edition, Springer-Verlag, Berlin, 1995. doi:10.1007/978-3-642-79319-6

 
 
Top