JMP  Vol.3 No.7 , July 2012
Temperature Dependent Motion of a Massive Quantum Particle
Author(s) Jian-Ping Peng*
ABSTRACT
We report model calculations of the time-dependent internal energy and entropy for a single quasi-free massive quantum particle at a constant temperature. We show that the whole process started from a fully coherent quantum state to thermodynamic equilibrium can be understood, based on statistics of diffracted matter waves. As a result of thermal interaction between the particle and its surroundings, the motion of the particle shows new feature.

Cite this paper
J. Peng, "Temperature Dependent Motion of a Massive Quantum Particle," Journal of Modern Physics, Vol. 3 No. 7, 2012, pp. 610-614. doi: 10.4236/jmp.2012.37083.
References
[1]   N. Piro, et al., “Heralded Single-Photon Absorption by a Single Atom,” Nature Physics, Vol. 7, 2011, pp. 17-20. doi:10.1038/nphys1805

[2]   C. Zipkes, S. Palzer, C. Sias and M. Koehl, “A Trapped Single Ion inside a Bose-Einstein Condensate,” Nature, Vol. 464, No. 18, 2010, pp. 388-391. doi:10.1038/nature08865

[3]   D. Serrate, et al., “Imaging and Manipulating the Spin Direction of Individual Atoms,” Nature Nanotechnology, Vol. 5, 2010, pp. 350-353. doi:10.1038/nnano.2010.64

[4]   L. D. Landau and E. M. Lifshitz, “Statistical Physics,” 3rd Edition, Pergamon Press Ltd, Oxford, 1980.

[5]   A. E. Allahverdyan and Th. M. Nieuwenhuizen, “Extraction of Work from a Single Thermal Bath in the Quantum Regime,” Physical Review Letters, Vol. 85, No. 9, 2000, pp. 1799-1802. doi:10.1103/PhysRevLett.85.1799

[6]   G. W. Ford and R. F. O’Connell R, “A Quantum Violation of the Second Law,” Physical Review Letters, Vol. 96, No. 2, 2006, p. 020402. doi:10.1103/PhysRevLett.96.020402

[7]   J. P. Peng, “Statistics of a Free Single Quantum Particle at a Finite Temperature,” Modern Physics Letters B, Vol. 24, No. 25, 2010, pp. 2541-2547. doi:10.1142/S0217984910024912

[8]   R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey and D. E. Knuth, “On the Lambert W Function,” Advances in Computational Mathematics, Vol. 5, No. 1, 1992, pp. 329-361. doi:10.1007/BF02124750

[9]   R. Hildner, D. Brinks and N. F. van Hulst, “Femtosecond Coherence and Quantum Control of Single Molecules at Room Temperature,” Nature Physics, Vol. 7, 2011, pp. 172-177. doi:10.1038/nphys1858

[10]   I. S. Gradshteyn and I. M. Rizhik, “Tables of Integrals, Series, and Products,” 7th Edition, Elservier Inc., London, 2007.

[11]   A. Zeilinger, R. Gaehler, C. G. Shull, W. Treimer and W. Mampe, “Single- and Double-Slit Diffraction of Neutrons,” Reviews of Modern Physics, Vol. 60, No. 4, 1988, pp. 1067-1073. doi:10.1103/RevModPhys.60.1067

[12]   A. Tonomura, J. Endo, T. Matsuda and T. Kawasaki, “Demonstration of Single-Electron Buildup of an Interference Pattern,” American Journal of Physics, Vol. 57, No. 2, 1989, pp. 117-120. doi:10.1119/1.16104

[13]   D. W. Keith, C. R. Ekstrom, Q. A. Turchtte and D. E. Pritchard, “An Interferometer for Atoms,” Physical Re- view Letters, Vol. 66, No. 21, 1991, pp. 2693-2696. doi:10.1103/PhysRevLett.66.2693

[14]   C. Presilla, R. Onofrio and M. Patriarca, “Classical and Quantum Measurements of Position,” Journal of Physics A: Mathematical and General, Vol. 30, No. 21, 1997, pp. 7385-7411. doi:10.1088/0305-4470/30/21/014

[15]   J. Mauritsson, et al., “Coherent Electron Scattering Captured by an Attosecond Quantum Stroboscope,” Physical Review Letters, Vol. 100, No. 7, 2008, p. 073003. doi:10.1103/PhysRevLett.100.073003

 
 
Top