JMMCE  Vol.11 No.3 , March 2012
High Temperature Oxidation and Hot Corrosion Behaviour of Yttria- Stabilised Zirconia as Plasma Sprayed Coating in Air and Salt at 900°C under Cyclic Condition
ABSTRACT
Yttria-Stabilised Zirconia (YSZ) coatings were deposited on a T-91 boiler steel. NiCrAlY was used as bond coat and YSZ as top coat. Hot corrosion studies were conducted on uncoated as well as plasma spray coated specimens in air as well as salt (75wt. % Na2SO4 + 25wt. % NaCl) at 900°C under cyclic conditions. The thermogravimetric technique was used to establish kinetics of corrosion. X-ray diffraction (XRD) and scanning electron microscopy/energy-dispersive x-ray analysis (SEM/EDAX) techniques were used to analyse the corrosion products. This YSZ overlay coatings enhance resistance to corrosion significantly which can be attributed to formation of zirconium oxides (ZrO2) and yttrium oxide (Y2O3). This coating was more effective in salt environment and there is an extra phase of ZrS.

Cite this paper
D. Gond, R. Lalbondre, D. Puri and S. Prakash, "High Temperature Oxidation and Hot Corrosion Behaviour of Yttria- Stabilised Zirconia as Plasma Sprayed Coating in Air and Salt at 900°C under Cyclic Condition," Journal of Minerals and Materials Characterization and Engineering, Vol. 11 No. 3, 2012, pp. 285-302. doi: 10.4236/jmmce.2012.113021.
References
[1]   K.G. Bundinski, Surface Engineering for Wear Resistance, Prentice-Hall, New Jersey, 1988.

[2]   M.K. Hobbs, H. Reiter, Residual stresses in ZrO2–8%Y2O3 plasma sprayed thermal barrier coatings, in: D.L. Houck (Ed.), Thermal Spray: Advances in Coatings Technology, ASM International, 1989, 285–290.

[3]   H. Herman, C.C. Berndt, H. Wang, Plasma sprayed ceramic coatings, in: J.B. Wachtman, R.A. Haber (Eds.), Ceramic Films and Coatings, Noyes Publications, New Jersey, 1993.

[4]   L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, Wiley, New York, 1995.

[5]   A.G. Evans, D.R. Mumm, J.W. Hutchinson, G.H. Meier, F.S. Pettit, Prog. Mater. Sci. 46 (2001) 505.

[6]   J.R. Brandon, R. Taylor, Surf. Coat. Techol. 69 (10) (1992) 75.

[7]   I. Gurrappa, J. Mater. Sci. Lett. 17 (1998) 1267.

[8]   R.L. Jones, J. Therm. Spray Technol. 6 (1) (1997 (March)) 77.

[9]   B.A. Nagaraj, D.J. Wortman, Trans. ASME 112 (1990) 536.

[10]   R. Srinivasan, J.M. Merrilea, Surf. Coat. Technol. 160 (2002) 187.

[11]   R.L. Jones, J. Am. Ceram. Soc. 75 (7) (1992) 1818.

[12]   K. Yamada, Y. Tomono, J. Morimoto, Y. Sasaki, A. Ohmori, Vacuum 65 (2002) 533–540.

[13]   R.A. Rapp, Y.S. Zhang, JOM, (1994 Dec) 47– 55.

[14]   P. Niranatlumpong, C.B. Ponton, H.E. Evans, Oxid. Met. 53 (3–4) (2000) 241.

[15]   R.A. Rapp, J.H. Devan, D.L. Douglass, P.C. Nordine, F.S. Pettit, D.P.Whittle, Mater. Sci.Eng.50 (1981) 1.

[16]   P.S. Liu, K.M. Liang, H.Y. Zhou, S.R. Gu, X.F. Sun, H.R. Guan, T. Jin, K.N. Yang, Surf. Coat. Technol. 145 (2001) 75.

[17]   S. Danyluk, J.Y. Park, Corrosion 35 (12) (1979) 575.

[18]   D. Wang, Surf. Coat. Technol. 36 (1988) 49.

[19]   S.E. Sadique, A.H. Mollah, M.S. Islam, M.M. Ali, M.H.H. Megat, S.Basri, Oxid. Met. 54 (5–6) (2000) 385.

[20]   R.A.Miller, R.G. Garlick, J.L. Smialek, Ceram. Bull. 62 (12) (1983) 1355.

[21]   A.N. Khan, J. Lu, H. Liao, Mater. Sci. Eng., A Struct. Mater.: Prop.Microstruct. Process. 359 (2003) 129.

[22]   C. Batista, A. Portinha, R.M. Ribeiro, V. Teixeira, C.R. Oliveira, Surf. Coat. Technol. 200 (2006) 6783–6791.

[23]   S.Y. Park, J.H. Kim, M.C. Kim, H.S. Song, C.G. Park, Surf. Coat. Technol.190 (2005) 357-365.

 
 
Top