Revisiting Sphere Unfolding Relationships for the Stereological Analysis of Segmented Digital Microstructure Images

E. J. Payton^{*}

Show more

References

[1] Abbruzzese G., 1985, “Computer simulated grain growth stagnation.” Acta Metall., Vol. 33, pp. 1329–1337.

[2]
Dieter, G.E., 1986, Mechanical Metallurgy, 3rd ed., McGraw-Hill Series in Materials Science and Engineering, McGraw-Hill, Boston, MA.

[3]
Porter, D.A. and Easterling, K. E., 1992, Phase Transformations in Metals and Alloys, 2nd ed., CRC press, Boca Raton, FL.

[4]
Payton, E.J., 2009, Characterization and Modeling of Grain Coarsening in Powder Metallurgical Nickel-based Superalloys, Ph.D. thesis, The Ohio State University, Columbus, OH.

[5]
Wang, G., Xu, D.S., Payton, E.J., Ma, N., Yang, R., Mills, M.J., and Wang, Y., 2011, “Mean-field statistical simulation of grain coarsening in the presence of stable and unstable pinning particles.” Acta Mater., Vol. 59, pp. 4587-4594.

[6]
Kahn, H., Mano, E.S., and Tassinari, M.M., 2002, “Image analysis coupled with a SEM-EDS applied to the characterization of a Zn-Pb partially weathered ore.” J. Miner. Mater. Charact. Eng., Vol. 1, pp. 1-9.

[7]
Gu, Y., 2003, “Automated scanning electron microscope based mineral liberation analysis: An introduction to JKMRC/FEI mineral liberation analyzer.” J. Miner. Mater. Charact. Eng., Vol. 2, pp. 33-41.

[8]
Hagni, A.M., 2008, “Phase identification, phase quantification, and phase association determinations utilizing automated mineralogy technology.” JOM, Vol. 60, pp. 33-37.

[9]
Payton, E.J., Phillips, P.J., and Mills, M.J., 2010, “Semi-automated characterization of the gamma prime phase in Ni-based superalloys via high-resolution backscatter imaging.” Mater. Sci. Eng. A, Vol. 527, pp. 2684–2692.

[10]
Schouwstra, R.P. and Smit, A.J., 2011, “Developments in mineralogical techniques – What about mineralogists?” Miner. Eng., Vol. 24, pp. 1224-1228.

[11]
Payton, E.J., Wang, G., Wang, G., Ma, N., Wang, Y., Mills, M.J., Whitis, D.D., Mourer, D.P., and Wei, D., 2008, “Integration of simulations and experiments for modeling superalloy grain growth,” in: Superalloys 2008, pp. 975-985, The Minerals, Metals & Materials Society, Warrendale, PA.

[12]
Wang, G., Xu, D.S., Ma, N., Zhou, N., Payton, E.J., Yang, R., Mills, M.J., and Wang, Y., 2009, “Simulation study of effects of initial particle size distribution on dissolution.” Acta Mater., Vol. 57, pp. 316-325.

[13]
Hilliard, J.E. and Cahn, J.W., 1961, “An evaluation of procedures in quantitative metallography for volume-fraction analysis.” Trans. AIME, Vol. 221, pp. 344-352.

[14]
Underwood, E.E., 1968, “Particle-size Distribution,” in: Quantitative Microscopy, pp. 149–200, McGraw-Hill Book Company, New York, NY.

[15]
Underwood, E.E., 1970, Quantitative Stereology, 2nd ed., Addison-Wesley Publishing Company, Reading, MA.

[16]
Cruz-Orive, L.M., 1976, “Particle size-shape distributions: the general spheroid problem.” J. Microsc., Vol. 107, pp. 235–253.

[17]
Cruz-Orive, L.M., 1978, “Particle size-shape distributions: the general spheroid problem: II. Stochastic model and practical guide.” J. Microsc., Vol. 112, pp. 153–167.

[18]
Cruz-Orive, L.M., 1983, “Distribution-free estimation of sphere size distributions from slabs showing overprojection and truncation, with a review of previous methods.” J. Microsc., Vol. 131, pp. 265–290.

[19]
Takahashi, J. and Suito, H., 2003, “Evaluation of the accuracy of the three-dimensional size distribution estimated from the Schwartz-Saltikov method.” Metall. Mater. Trans. A, Vol. 34, pp. 171-181.

[20]
Payton, E.J. and Mills, M. J., 2011, “Stereology of backscatter electron images of etched surfaces for characterization of particle size distributions and volume fractions: Estimation of imaging bias via Monte Carlo simulations.” Mater. Charact., Vol. 62, pp. 563-574.

[21]
Jeppsson, J., Mannesson, K., Borgenstam, A., and ?gren, J., 2011, “Inverse Saltikov analysis for particle-size distributions and their time evolution.” Acta Mater., Vol. 59, pp. 874-882.

[22]
Ohser, J. and Mücklich, F., 2000, Statistical analysis of microstructures in materials science, John Wiley & Sons, New York, NY.

[23]
Ohser, J. and Mucklich, F., 1995, “Stereology for some classes of polyhedrons.” Adv. Appl. Prob., Vol. 27, pp. 384-396.

[24]
Scott, D.W., 1979, “On optimal and data-based histograms.” Biometrika, Vol. 66, pp. 605-610.

[25]
Saltikov, S.A.: “The determination of the size distribution of particles in an opaque material from a measurement of the size distribution of their sections,” in: Stereology: Proceedings of the Second International Congress for Stereology, Chicago, 1967, pp. 163–173.

[26]
Heilbronner, R. and Bruhn D., 1998, “The influence of three-dimensional grain size distributions on the rheology of polyphase rocks.” J. Struct. Geol., Vol. 20, pp. 695–705.

[27]
Heilbronner, R., 2002, “How to derive size distributions of particles from size distributions of sectional areas,” Conférence Universitaire de Suisse Occidentale, 3ème Cycle Séminaire: “Analyse d’images et morphométrie d’objets géologiques,” Organisé à Neuchatel, Institut de Géologie, Université de Neuchatel.

[28]
Ford, W.B., 1922, A Brief Course in College Algebra, The Macmillan Company, New York, NY.

[29]
Limpert, E., Stahel, W.A., and Abbt, M., 2001, “Log-normal Distributions across the Sciences: Keys and Clues.” BioScience, Vol. 51, pp. 341-352.

[30]
Russ, J.C. and Dehoff, R.T., 2000, Practical Stereology, Kluwer Academic, New York, NY.