AJMB  Vol.2 No.3 , July 2012
Knockdown of Dock7 in vivo specifically affects myelination by Schwann cells and increases myelin thickness in sciatic nerves without affecting axon thickness
Abstract: During development of the peripheral nervous system (PNS), Schwann cells (SCs) wrap individual axons to form myelin sheaths, which act as surrounding insulators and markedly enhance the propagation of the action potential. In peripheral neuropathies such as Guillain-Barré syndrome (GBS) and inherited demyelinating Charcot-Marie-Tooth (CMT) disease and diabetic neuropathies, chronic demyelination and defective remyelination are repeated, causing more severe neuropathies. It is thus thought that development of a drug that promotes proper myelination with minimal side effects could provide an effective therapy for these diseases. As yet, however, little is known about therapeutic target molecules and genetically-modified mice for testing such approaches. We previously cloned the dock7 gene and characterized Dock7 as the regulator controlling SC myelination; however, an important issue, whether knockdown of Dock7 specifically affects myelination by SCs but not leaves neurons unaffected, has remained unclear. Here, we generate newly-produced transgenic mice harboring short-hairpin RNA (shRNA) targeting Dock7. We also describe that Dock7 shRNA transgenic mice exhibit enhanced myelin thickness without affecting axon thickness in sciatic nerves of the PNS, as reduced thickness of the axon diameter is the primary indicator of denatured neurons. Similarly, purified in vitro SC-neuronal cocultures established from transgenic mice exhibit enhanced formation of myelin segments, suggesting that knockdown of Dock7 promotes myelination by SCs. Collectively, Dock7 knockdown specifically affects SC myelination in sciatic nerves, providing evidence that Dock7 may be a promising drug-target-specific molecules for developing a therapy for peripheral neuropathies that aims to enhance myeliantion.
Cite this paper: Torii, T. , Miyamoto, Y. , Nagao, M. , Onami, N. , Tsumura, H. , Maeda, M. , Nakamura, K. , Tanoue, A. and Yamauchi, J. (2012) Knockdown of Dock7 in vivo specifically affects myelination by Schwann cells and increases myelin thickness in sciatic nerves without affecting axon thickness. American Journal of Molecular Biology, 2, 210-216. doi: 10.4236/ajmb.2012.23021.

[1]   Bunge, R. P. (1993) Expanding roles for the Schwann cell: ensheathment, myelination, trophism and regeneration. Curr. Opin. Neurobiol. 3, 805-809.

[2]   Mirsky, R., and Jessen, K. R. (1996) Schwann cell development, differentiation and myelination. Curr. Opin. Neurobiol. 6, 89-96.

[3]   Berger, P., Niemann, A., and Suter, U. (2006) Schwann cells and the pathogenesis of inherited motor and sensory neuropathies (Charcot-Marie-Tooth disease). Glia 54, 243-257. doi:10.1002/glia.20386

[4]   Nave, K. A., and Salzer, J. L. (2006) Axonal regulation of myelination by neuregulin 1. Curr. Opin. Neurobiol. 16, 492-500.

[5]   Taveggia, C., Feltri, M. L., and Wrabetz, L. (2010) Signals to promote myelin formation and repair. Nat. Rev. Neurol. 6, 276-287 doi:10.1038/nrneurol.2010.37

[6]   Ogata, T., Iijima, S., Hoshikawa, S., Miura, T., Yamamoto, S., Oda, H., Nakamura, K., and Tanaka, S. (2004) Opposing extracellular signal-regulated kinase and Akt pathways control Schwann cell myelination. J. Neurosci. 24, 6724-632. doi:10.1523/JNEUROSCI.5520-03.2004

[7]   Yamauchi, J., Miyamoto, Y., Chan, J. R., and Tanoue, A. (2008) ErbB2 directly activates the exchange factor Dock7 to promote Schwann cell migration. J. Cell Biol. 181, 351-365. doi:10.1083/jcb.200709033

[8]   Yamauchi, J., Miyamoto, Y., Hamasaki, H., Sanbe, A., Kusakawa, S., Nakamura, A., Tsumura, H., Maeda, M., Nemoto, N., Kawahara, K., Torii, T., and Tanoue, A. (2011) The atypical Guanine-nucleotide exchange factor, dock7, negatively regulates schwann cell differentiation and myelination. J. Neurosci. 31, 12579-12592. doi:10.1523/JNEUROSCI.2738-11.2011

[9]   Kaibuchi, K., Kuroda, S., and Amano, M. (1999) Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells. Annu. Rev. Biochem. 68, 459-486. doi:10.1146/annurev.biochem.68.1.459

[10]   Takai, Y., Sasaki, T., and Matozaki, T. (2001) Small GTP-binding proteins. Physiol. Rev. 81, 153-208.

[11]   Schmidt, A., and Hall, A. (2002) Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev. 16, 1587-1609. doi:10.1101/gad.1003302

[12]   Rossman, K. L., Der, C. J., and Sondek, J. (2005) GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat. Rev. Mol. Cell Biol. 6, 167-180. doi:10.1038/nrm1587

[13]   Miyamoto, Y., and Yamauchi, J. (2010) The cellular signaling of Dock family in neural function. Cell. Signal. 22, 175-182.

[14]   Tanoue, A. Ito, S., Honda, K., Oshikawa, S., Kitagawa, Y., Koshimizu, T. A., Mori, T., and Tsujimoto, G. (2004) The vasopressin V1b receptor critically regulates hypothalamic-pituitary-adrenal axis activity under both stress and resting conditions. J. Clin. Invest. 113, 302-309. doi:10.1172/JCI200419656

[15]   Yamauchi, J., Chan, J. R., and Shooter, E. M. (2004) Neurotrophins regulate Schwann cell migration by activating divergent signaling pathways dependent on Rho GTPases. Proc. Natl. Acad. Sci. USA 101, 8774-8779. doi:10.1073/pnas.0402795101

[16]   Yamauchi, J., Chan, J. R., Miyamoto, Y., Tsujimoto, G., and Shooter, E. M. (2005a) The neurotrophin-3 receptor TrkC directly phosphorylates and activates the nucleotide exchange factor Dbs to enhance Schwann cell migration. Proc. Natl. Acad. Sci. USA 102, 5198-5203. doi:10.1073/pnas.0501160102

[17]   Yamauchi, J., Miyamoto, Y., Tanoue, A., Shooter, E. M., and Chan, J. R. (2005b) Ras activation of a Rac1 exchange factor, Tiam1, mediates neurotrophin-3-induced Schwann cell migration. Proc. Natl. Acad. Sci. USA 102, 14889-14894. doi:10.1073/pnas.0507125102

[18]   Ratner, N. Williams, J. P., Kordich, J. J., and Kim, H. A. (2006) Schwann cell preparation from single mouse embryos: analyses of neurofibromin function in Schwann cells. Meth. Enzymol. 407, 22-33.

[19]   Yajnik, V., Paulding, C., Sordella, R., McClatchey, A. I., Saito, M., Wahrer, D. C., Reynolds, P., Bell, D. W., Lake, R., van den Heuvel, S., Settleman, J., and Haber, D. A. (2003) DOCK4, a GTPase activator, is disrupted during tumorigenesis. Cell 112, 673-684.

[20]   Ueda, S., Fujimoto, S., Hiramoto, K., Negishi, M., and Katoh, H. (2008) Dock4 regulates dendritic development in hippocampal neurons. J. Neurosci. Res. 86, 3052-3061. doi:10.1002/jnr.21763