[1] Glover, J. R. and Lindquist, S. (1998) Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell, 94, 73-82. http://dx.doi.org/10.1016/S0092-8674(00)81223-4
[2] Chai, Y., Koppenhafer, S.L., Bonini, N.M. and Paulson, H.L. (1999) Analysis of the role of heat shock protein (Hsp) molecular chaperones in polyglutamine disease. Journal of Neuroscience, 19, 10338-10347.
[3] Muchowski, P. J., Schaffar, G., Sittler, A., Wanker, E. E., Hayer-Hartl, M. K. and Hartl, F. U. (2000) Hsp70 and hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils. Proceedings of the National Academy of Sciences USA, 97, 7841-7846. doi:10.1073/pnas.140202897
[4] Stockel, J. and Hartl, F. U. (2001) Chaperonin-mediated de novo generation of prion protein aggregates. Journal of Molecular Biology, 313, 861-872. doi:10.1006/jmbi.2001.5085
[5] Tam, S., Spiess, C., Auyeung, W., Joachimiak, L., Chen, B., Poirier, M.A. and Frydman, J. (2009) The chaperonin TRiC blocks a huntingtin sequence element that promotes the conformational switch to aggregation. Nature Structural and Molecular Biology, 16, 1279-1285. doi:10.1038/nsmb.1700
[6] Behrends, C., Langer, C. A., Boteva, R., Bottcher, U. M., Stemp, M. J., Schaffar, G., Rao, B. V., Giese, A., Kretz-schmar, H., Siegers, K. and Hartl, F.U. (2006) Chaperonin TRiC promotes the assembly of polyQ expansion proteins into nontoxic oligomers. Molecular Cell, 23, 887-897. doi:10.1016/j.molcel.2006.08.017
[7] Frydman, J., Nimmesgern, E., Erdjument-Bromage, H., Wall, J.S., Tempst, P. and Hartl, F.U. (1992) Function in protein folding of TRiC, a cytosolic ring complex containing TCP-1 and structurally related subunits. EMBO Journal, 11, 4767-4778.
[8] Gao, Y., Thomas, J. O., Chow, R. L., Lee, G. H. and Cowan, N.J. (1992) A cytoplasmic chaperonin that catalyzes beta-actin folding. Cell, 69, 1043-1050. http://dx.doi.org/10.1016/0092-8674(92)90622-J
[9] Yaffe, M. B., Farr, G. W., Miklos, D., Horwich, A. L., Sternlicht, M.L. and Sternlicht, H. (1992) TCP1 complex is a molecular chaperone in tubulin biogenesis. Nature, 358, 245-248. http://dx.doi.org/10.1038/358245a0
[10] Marco, S., Carrascosa, J. L. and Valpuesta, J. M. (1994) Reversible interaction of beta-actin along the channel of the TCP-1 cytoplasmic chaperonin. Biophysical Journal, 67, 364-368. http://dx.doi.org/10.1016/S0006-3495(94)80489-8
[11] Farr, G. W., Scharl, E. C., Schumacher, R. J., Sondek, S. and Horwich, A. L. (1997) Chaperonin-mediated folding in the eukaryotic cytosol proceeds through rounds of release of native and nonnative forms. Cell, 89, 927-937. http://dx.doi.org/10.1016/S0092-8674(00)80278-0
[12] Ditzel, L., Lowe, J., Stock, D., Stetter, K. O., Huber, H., Huber, R. and Steinbacher, S. (1998) Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT. Cell, 93, 125-138. http://dx.doi.org/10.1016/S0092-8674(00)81152-6
[13] Bukau, B. and Horwich, A. L. (1998) The Hsp70 and Hsp60 chaperone machines. Cell, 92, 351-366. http://dx.doi.org/10.1016/S0092-8674(00)80928-9
[14] Gething, M. J. and Sambrook, J. (1992) Protein folding in the cell. Nature, 355, 33-45. http://dx.doi.org/10.1038/355033a0
[15] Yifrach, O. and Horovitz, A. (2000) Coupling between protein folding and allostery in the GroE chaperonin system. Proceedings of the National Academy of Sciences USA, 97, 1521-1524. doi:10.1073/pnas.040449997
[16] Ranson, N. A., Farr, G. W., Roseman, A. M., Gowen, B., Fenton, W. A., Horwich, A. L. and Saibil, H. R. (2001) ATP-bound states of GroEL captured by cryo-electron microscopy. Cell, 107, 869-879. http://dx.doi.org/10.1016/S0092-8674(01)00617-1
[17] Hartl, F. U. and Hayer-Hartl, M. (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science, 295, 1852-1858. doi:10.1126/science.1068408
[18] Taniguchi, M., Yoshimi, T., Hongo, K., Mizobata, T. and Kawata, Y. (2004) Stopped-flow fluorescence analysis of the conformational changes in the GroEL apical domain: relationships between movements in the apical domain and the quaternary structure of GroEL. Journal of Biological Chemistry, 279, 16368-16376. doi:10.1074/jbc.M311806200
[19] Braig, K., Otwinowski, Z., Hegde, R., Boisvert, D. C., Joachimiak, A., Horwich, A. L. and Sigler, P.B. (1994) The crystal structure of the bacterial chaperonin GroEL at 2.8 A. Nature, 371, 578-586. http://dx.doi.org/10.1038/371578a0
[20] Hunt, J. F., Weaver, A. J., Landry, S. J., Gierasch, L. and Deisenhofer, J. (1996) The crystal structure of the GroES co-chaperonin at 2.8 A resolution. Nature, 379, 37-45. http://dx.doi.org/10.1038/379037a0
[21] Meyer, A. S., Gillespie, J. R., Walther, D., Millet, I. S., Doniach, S. and Frydman, J. (2003) Closing the folding chamber of the eukaryotic chaperonin requires the transition state of ATP hydrolysis. Cell, 113, 369-381. http://dx.doi.org/10.1016/S0092-8674(03)00307-6
[22] Nitsch, M., Klumpp, M., Lupas, A. and Baumeister, W. (1997) The thermosome: alternating alpha and beta-sub-units within the chaperonin of the archaeon Thermoplasma acidophilum. Journal of Molecular Biology, 267, 142-149. http://dx.doi.org/10.1006/jmbi.1996.0849
[23] Ruepp, A., Graml, W., Santos-Martinez, M. L., Koretke, K. K., Volker, C., Mewes, H. W., Frishman, D., Stocker, S., Lupas, A. N. and Baumeister, W. (2000) The genome sequence of the thermoacidophilic scavenger Thermoplasma acidophilum. Nature, 407, 508-513. doi:10.1038/35035069
[24] Bosch, G., Baumeister, W. and Essen, L.O. (2000) Crystal structure of the beta-apical domain of the thermosome reveals structural plasticity in the protrusion region. Journal of Molecular Biology, 301, 19-25. doi:10.1006/jmbi.2000.3955
[25] Heller, M., John, M., Coles, M., Bosch, G., Baumeister, W. and Kessler, H. (2004) NMR studies on the substrate-binding domains of the thermosome: structural plasticity in the protrusion region. Journal of Molecular Biology, 336, 717-729. doi:10.1016/j.jmb.2003.12.035
[26] Gutsche, I., Mihalache, O., Hegerl, R., Typke, D. and Baumeister, W. (2000) ATPase cycle controls the conformation of an archaeal chaperonin as visualized by cryo-electron microscopy. FEBS Letters, 477, 278-282. http://dx.doi.org/10.1016/S0014-5793(00)01811-1
[27] Hirai, H., Noi, K., Hongo, K., Mizobata, T. and Kawata, Y. (2008) Functional characterization of the recombinant group II chaperonin alpha from Thermoplasma acidophilum. Journal of Biochemistry, 143, 505-515. doi:10.1093/jb/mvm241
[28] Noi, K., Hirai, H., Hongo, K., Mizobata, T. and Kawata, Y. (2009) A potentially versatile nucleotide hydrolysis activity of group II chaperonin monomers from Thermoplasma acidophilum. Biochemistry, 48, 9405-9415. doi:10.1021/bi900959c
[29] Cavicchioli, R., Pilak, O., Harrop, S. J., Siddiqui, K. S., Chong, K., De Francisci, D., Burg, D., Williams, T. J. and Curmi, P. M. G. (2011) Chaperonins from an Antarctic archaeon are predominantly monomeric: crystal structure of an open state monomer. Environmental Microbiology, 13, 2232-2249. doi:10.1111/j.1462-2920.2011.02477.x
[30] Stansfield, I., Jones, K.M., Kushnirov, V.V., Dagkesamanskaya, A.R., Poznyakovski, A.I., Paushkin, S.V., Nierras, C.R., Cox, B.S., Ter-Avanesyan, M.D. and Tuite, M.F. (1995) The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae. EMBO Journal, 14, 4365-4373.
[31] Spiess, C., Miller, E. J., McClellan, A. J. and Frydman, J. (2006) Identification of the TRiC/CCT substrate binding sites uncovers the function of subunit diversity in eukaryotic chaperonins. Molecular Cell, 24, 25-37. doi:10.1016/j.molcel.2006.09.003
[32] Yagi, H., Kusaka, E., Hongo, K., Mizobata, T. and Kawata, Y. (2005) Amyloid fibril formation of alpha-synu- clein is accelerated by preformed amyloid seeds of other proteins: implications for the mechanism of transmissible conformational diseases. Journal of Biological Chemistry, 280, 38609-38616. doi:10.1074/jbc.M508623200
[33] Glover, J. R., Kowal, A. S., Schirmer, E. C., Patino, M. M., Liu, J. J. and Lindquist, S. (1997) Self-seeded fibers formed by Sup35, the protein determinant of [PSI+], a heritable prion-like factor of S. cerevisiae. Cell, 89, 811-819. http://dx.doi.org/10.1016/S0092-8674(00)80264-0
[34] Zahn, R., Buckle, A. M., Perrett, S., Johnson, C. M., Corrales, F. J., Golbik, R. and Fersht, A. R. (1996) Chaperone activity and structure of monomeric polypeptide binding domains of GroEL. Proceedings of the National Academy of Sciences USA, 93, 15024-15029. http://dx.doi.org/10.1073/pnas.93.26.15024
[35] Klumpp, M., Baumeister, W. and Essen, L. O. (1997) Structure of the substrate binding domain of the thermosome, an archaeal group II chaperonin. Cell, 91, 263-270. http://dx.doi.org/10.1016/S0092-8674(00)80408-0
[36] Jayasinghe, M., Tewmey, C. and Stan, G. (2010) Versatile substrate protein recognition mechanism of the eukaryotic chaperonin CCT. Proteins, 78, 1254-1265. doi:10.1002/prot.22644
[37] Tipton, K. A., Verges, K. J. and Weissman, J. S. (2008) In vivo monitoring of the prion replication cycle reveals a critical role for Sis1 in delivering substrates to Hsp104. Molecular Cell, 32, 584-591. doi:10.1016/j.molcel.2008.11.003
[38] Shorter, J. and Lindquist, S. (2008) Hsp104, Hsp70 and Hsp40 interplay regulates formation, growth and elimination of Sup35 prions. EMBO Journal, 27, 2712-2724. doi:10.1038/emboj.2008.194
[39] Kubota, S., Kubota, H. and Nagata, K. (2006) Cytosolic chaperonin protects folding intermediates of Gbeta from aggregation by recognizing hydrophobic beta-strands. Proceedings of the National Academy of Sciences USA, 103, 8360-8365. doi:10.1073/pnas.0600195103
[40] Krishnan, R. and Lindquist, S. L. (2005) Structural insights into a yeast prion illuminate nucleation and strain diversity. Nature, 435, 765-772. doi:10.1038/nature03679
[41] Fenton, W. A., Kashi, Y., Furtak, K. and Horwich, A. L. (1994) Residues in chaperonin GroEL required for polypeptide binding and release. Nature, 371, 614-619. http://dx.doi.org/10.1038/371614a0
[42] Xu, Z., Horwich, A. L. and Sigler, P.B. (1997) The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature, 388, 741-750. http://dx.doi.org/10.1038/41944
[43] Tanaka, N. and Fersht, A. R. (1999) Identification of substrate binding site of GroEL minichaperone in solution. Journal of Molecular Biology, 292, 173-180. http://dx.doi.org/10.1006/jmbi.1999.3041
[44] Llorca, O., McCormack, E. A., Hynes, G., Grantham, J., Cordell, J., Carrascosa, J. L., Willison, K. R., Fernandez, J. J. and Valpuesta, J. M. (1999) Eukaryotic type II chaperonin CCT interacts with actin through specific subunits. Nature, 402, 693-696. http://dx.doi.org/10.1038/45294
[45] Dekker, C., Stirling, P. C., McCormack, E. A., Filmore, H., Paul, A., Brost, R. L., Costanzo, M., Boone, C., Leroux, M. R. and Willison, K. R. (2008) The interaction network of the chaperonin CCT. EMBO Journal, 27, 1827-1839. doi:10.1038/emboj.2008.108
[46] Yam, A. Y., Xia, Y., Lin, H. T., Burlingame, A., Gerstein, M. and Frydman, J. (2008) Defining the TRiC/CCT interactome links chaperonin function to stabilization of newly made proteins with complex topologies. Nature Structural and Molecular Biology, 15, 1255-1262. doi:10.1038/nsmb.1515
[47] Koradi, R., Billeter, M. and Wuthrich, K. (1996) MOLMOL: a program for display and analysis of macromolecular structures. Journal of Molecular Graphics, 14, 51-55, 29-32.