AJMB  Vol.2 No.3 , July 2012
The full length PtSRP (Pisolithus tinctorius symbiosis related protein) fungal mRNA encodes a potential marker of ectomycorrhiza formation
Abstract: The Pisolithus tinctorius symbiosis related protein expressed sequence tag (EST PtSRP) was previously identified in the first hours of the interaction between the fungus Pisolithus tinctorius and sweet chestnut Castanea sativa, and partially characterized as a fungal marker gene of ectomycorrhizal symbiosis formation. We used the 5’ rapid amplification of cDNA ends (RACE) to obtain the PtSRP mRNA 5’ region, and together with our previously reported 3’ mRNA region, the full mRNA sequence was assembled by use of bioinformatics tools and deposited to GenBank (Accession: GU733439). The full-length mRNA sequence (636 bp) revealed the locations of the 5’ and 3’ untranslated regions (UTRs) and contained the Kozak sequence (ccc aag ATG A) in the 5’ UTR. The in silico translated PtSRP open reading frame (ORF) codes for a 127 amino acid protein and contained four putative post-translational modification sites (two N-glycosylation and two phosphorylation). The protein secondary structure is postulated to be composed of one N-terminal hydrophobic transmembrane alpha helix and at least six hydrophilic beta-strands spread across the protein. Sub-cellular localization prediction suggests that the protein is involved in cellular secretory pathway, supported by the presence of a cleavage site motif close to the membrane anchor. The data presented herein indicate the role of PtSRP as a fungal membrane secreted protein involved in early stages of ectomycorrhizal formation, with application as a possible marker for nascent ectomy-corrhiza fungal development.
Cite this paper: Vieira, H. , Lima, C. , Calzavara-Silva, C. , Acioli-Santos, B. and Malosso, E. (2012) The full length PtSRP (Pisolithus tinctorius symbiosis related protein) fungal mRNA encodes a potential marker of ectomycorrhiza formation. American Journal of Molecular Biology, 2, 258-264. doi: 10.4236/ajmb.2012.23027.

[1]   Tagu, D., Lapeyrie, F. and Martin, F. (2002) The ecto-mycorrhizal symbiosis: genetics and development. Plant Soil, 244(1-2): 97-105.

[2]   Le Quere, A., Wright, D.P., Soderstrom, B., Tunlid, A. and Johansson, T.(2005) Global patterns of gene regulation associated with the development of ectomycorrhiza between birch (Betula pendula Roth.) and Paxillus involutus (Batsch) Fr. Mol Plant Microbe Interact , 18(7):659-673.

[3]   Acioli-Santos, B., Sebastiana, M., Pessoa, F., Sousa, L., Figueiredo, A., Fortes, A.M., Balde, A., Maia, L.C and Pais, M.S. (2008) Fungal transcript pattern during the preinfection stage (12 h) of ectomy-corrhiza formed between Pisolithus tinctorius and Castanea sativa roots, identified using cDNA microarrays. Curr Microbiol, 57(6):620-625.

[4]   ilbert, J.L., Costa, G. and Martin, F. (1991) Ectomycorrhizin Synthesis and Polypeptide Changes during the Early Stage of Eucalypt Mycorrhiza Development. Plant Physiol, 97(3):977-984.

[5]   Burgess, T., Laurent, P., Dell, B., Malajczuk, N. and Martin, F. (1995) Effect of fungal-isolate aggressivity on the biosynthesis of symbiosis-related polypeptides in differentiating eucalypt ecto-mycorrhizas. Planta, 195(3):408-417.

[6]   Martin, F., Duplessis, S., Ditengou, F., Lagrange, H., Voiblet, C. and Lapeyrie, F. (2001) Developmental cross talking in the ectomycorrhizal symbiosis: signal and communication genes. New Phytologist, 151(1):145-154.

[7]   Hilbert, J.L. and Martin, F. (1988) Regulation of gene expression in ectomycorrhizas. I. Protein changes and the presence of the ectomycorrhiza-specific polypeptides in the Pisolithus-Eucalyptus symbiosis. New Phytologist, 110:339-346.

[8]   Voiblet, C., Duplessis, S., Encelot, N. and Martin, F. (2001) Identification of symbiosis-regulated genes in Eucalyptus globulus-Pisolithus tinctorius ectomycorrhiza by differential hybridization of arrayed cDNAs. Plant J, 25(2):181-191.

[9]   Duplessis, S., Courty, P.E., Tagu, D. and Martin, F. (2005) Transcript patterns associated with ectomycorrhiza development in Eucalyptus globulus and Pisolithus microcarpus. New Phytologist, 165(2):599-611.

[10]   Martin, F., Aerts, A., Ahren, D., Brun, A., Danchin, E.G., Duchaussoy, F., Gibon, J., Kohler, A., Lindquist, E. and Pereda, V. et al (2008) The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature, 452(7183):88-92.

[11]   Acioli-Santos, B., Malosso, E., Calzavara-Silva, C.E., Lima, C.E.P., Figueiredo, A., Sebastiana, M. and Pais, M.S. (2009) PtSRR1, a putative Pisolithus tinctorius symbiosis related receptor gene is expressed during the first hours of mycorrhizal interaction with Castanea sativa roots. Brazilian Journal of Microbiology, 40:292-295.

[12]   Tagu, D., Nasse, B. and Martin, F. (1996) Cloning and and characterization of hydrophobins-encoding cDNAs from the ectomycorrhizal basdiomycete Pisolithus tinctorius. Gene, 168(1):93-97.

[13]   Laurent, P., Voiblet, C., Tagu, D., de Carvalho, D., Nehls, U., De Bellis, R., Balestrini, R., Bauw, G., Bonfante, P. and Martin, F. (1999) A novel class of ectomycorrhiza-regulated cell wall polypeptides in Pisolithus tinctorius. Mol Plant Microbe Interact, 12(10):862-871.

[14]   Peter, M., Courty, P., Kohler, A., Delaruelle, C., Martin, D., Tagu, D., Frey-klett, P., Duplessis, S., Chalot, M., Podila, G. et al(2003) Analysis of expressed sequence tags from the ectomycorrhizal basio-diomycetes Laccaria bicolor and Pisolithus microcarpus. New Phytologist, 159(1):117-129.

[15]   De Angioletti, M., Lacerra, G., Sabato, V., and Carestia, C. (2004) Beta+45 G --> C: a novel silent beta-thalassaemia mutation, the first in the Kozak sequence. Br J Haematol, 124(2):224-231.

[16]   Kozak, M. (1984) Point mutations close to the AUG initiator codon affect the efficiency of translation of rat preproinsulin in vivo. Nature, 308(5956):241-246.

[17]   Kozak, M. (1987) An analysis of 5’-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res, 15(20):8125-8148.

[18]   Cavener, D.R. (1987) Comparison of the consensus sequence flanking translational start sites in Drosophila and vertebrates. Nucleic Acids Res, 15(4):1353-1361.

[19]   Hamilton, R., Watanabe, C.K. and de Boer, H.A. (1987) Compilation and comparison of the sequence context around the AUG startcodons in Saccharomyces cerevisiae mRNAs. Nucleic Acids Res, 15(8):3581-3593.

[20]   Lutcke, H.A., Chow, K.C., Mickel, F.S., Moss, K.A., Kern, H.F. and Scheele, G.A. (1987) Selection of AUG initiation codons differs in plants and animals. EMBO J, 6(1):43-48.

[21]   Ruoslahti, E. (1996) RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol, 12:697-715.

[22]   Nehls, U., Mikolajewski, S., Ecke, M. and Hampp, R. (1999) Identification and expression analysis of two fungal cDNA regulated by ectomycorrhiza and fruit body formation. New Phytologist, 144(1):195-202.

[23]   Sundaram, S., Kim, S.J., Suzuki, H., McQuattie, C.J., Hiremah, S.T. and Podila, G.K. (2001) Isolation and characterization of a symbiosis-regulated ras from the ectomycorrhizal fungus Laccaria bicolor. Mol Plant Microbe Interact, 14(5):618-628.

[24]   Baptista, P., Martins, A., Pais, M.S., Tavares, R.M. and Lino-Neto, T. (2007) Involvement of reactive oxygen species during early stages of ectomy-corrhiza establishment between Castanea sativa and Pisolithus tinctorius. Mycorrhiza, 17(3):185-193.

[25]   Marx, D.H. (1969) The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. II. Production, identification, and biological activity of antibiotics produced by Leucopaxillus cerealis var. piceina. Phytopathology, 59(4):411-417.

[26]   McGinnis, S., Madden, T.L. (2004) BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res, 32(Web Server issue):W20-25.

[27]   Rost, B. and Liu, J. (2003) The Predict Protein server. Nucleic Acids Res, 31(13):3300-3304.

[28]   Hunter, S., Apweiler, R., Attwood, T.K., Bairoch, A., Bateman, A., Binns, D., Bork, P., Das, U., Daugherty, L., Duquenne, L. et al (2009) InterPro: the integrative protein signature database. Nucleic Acids Res, 37(Database issue):D211-215.

[29]   Emanuelsson, O., Nielsen, H., Brunak, S. and von Heijne, G. (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol, 300(4):1005-1016.

[30]   Nielsen, H., Engelbrecht, J., Brunak, S. and von Heijne, G. (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng, 10(1):1-6.

[31]   Emanuelsson, O., Nielsen, H. and von Heijne, G. (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci, 8(5):978-984.

[32]   Bendtsen, J.D., Nielsen, H., von Heijne, G. and Brunak, S. (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol, 340(4):783-795.

[33]   Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindya-lov, I.N. and Bourne, P.E. (2000) The Protein Data Bank. Nucleic Acids Res, 28(1):235-242.