[1] W. Sokol and W. Korpal, “Aerobic Treatment of Wastewaters in the Inverse Fluidised Bed Biofilm Reactor,” Chemical Engineering Journal, Vol. 118, No. 3, 2006, pp. 199-205. doi:10.1016/j.cej.2005.11.013
[2] P. Huppe, H. Hoke and D. C. Hempel, “Biological Treatment of Effluents from a Coal Tar Refinery Using Immobilized Biomass,” Chemical Engineering Technology, Vol. 13, No. 1, 1990, pp. 73-79. doi:10.1002/ceat.270130110
[3] W. Sokol, A. Ambaw and B. Woldeyes, “Biological Wastewater Treatment in the Inverse Fluidised Bed Reactor,” Chemical Engineering Journal, Vol. 150, No. 1, 2009, pp. 63-68. doi:10.1016/j.cej.2008.12.021
[4] A. Lohi, M. Aivarez-Cuenca, G. Anania, S. R. Upreti and L. Wan, “Biodegradation of Diesel Fuel-Contaminated Wastewater Using a Three-Phase Fluidized Bed Reactor,” Journal of Hazardous Materials, Vol. 154, No. 1-3, 2008, pp. 105-111. doi:10.1016/j.jhazmat.2007.10.001
[5] M. Bajaj, C. Gallert and J. Winter, “Biodegradation of High Phenol Containing Synthetic Wastewater by an Aerobic Fixed Bed Reactor,” Bioresource Technology, Vol. 99, No. 17, 2008, pp. 8376-8381. doi:10.1016/j.biortech.2008.02.057
[6] P. A. Fitzgerald, “Comprehensive Monitoring of a Fluidized Bed Reactor for Anaerobic Treatment of High Strength Wastewater,” Chemical Engineering Science, Vol. 51, No. 11, 1996, pp. 2829-2834. doi:10.1016/0009-2509(96)00160-1
[7] R. Sowmeyan and G. Swaminathan, “Evaluation of Inverse Anaerobic Fluidized Bed Reactor for Treating High Strength Organic Wastewater,” Bioresource Technology, Vol. 99, No. 9, 2008, pp. 3877-3880. doi:10.1016/j.biortech.2007.08.021
[8] R. Sowmeyan and G. Swaminathan, “Performance of Inverse Anaerobic Fluidized Bed Reactor for Treating High Strength Organic Wastewater During Start-Up Phase,” Bioresource Technology, Vol. 99, No. 14, 2008, pp. 6280-6284. doi:10.1016/j.biortech.2007.12.001
[9] W. Sokol and M. R. Halfani, “Hydrodynamics of a Gas-Liquid-Solid Fluidized Bed Bioreactor with a Low Density Biomass Support,” Biochemical Engineering Journal, Vol. 3, No. 3, 1999, pp. 185-192. doi:10.1016/S1369-703X(99)00016-9
[10] W. Sokol, “Operational Range for a Gas-Liquid-Solid Fluidized Bed Aerobic Biofilm Reactor with a Low-Density Biomass Support,” International Journal of Chemical Reaction Engineering, Vol. 8, 2010, Article A111. http://www.bepress.com/ijcre/vol8/A111.
[11] L. Nikolov and D. Karamanev, “Experimental Study of the Inverse Fluidised Bed Biofilm Reactor,” Canadian Journal of Chemical Engineering, Vol. 65, 1987, No. 2, pp. 214-217. doi:10.1002/cjce.5450650204
[12] N. Fernandez, S. Montalvo, R. Borja, L. Guerrero, E. Sanchez, I. Cortes, M. F. Comenarejo, L. Traviso and F. Raposo, “Performance Evaluation of an Anaerobic Fluidized Bed Reactor with Natural Zeolite as Support Material When Treating High-Strength Distillery Wastewater,” Renewable Energy, Vol. 33, No. 11, 2008, pp. 2458-2466. doi:10.1016/j.renene.2008.02.002
[13] W. Verstraete and E. van Vaerenbergh, “Aerobic Activated Sludge“, In: W. Schonborn, Ed., Biotechnology, VCH Verlagessellschaft GmbH, Weinheim, 1986, pp. 43-112.
[14] D. G. Karamanev, T. Nagamune and K. Endo, “Hydrodynamics and Mass Transfer Study of a Gas-Liquid-Solid Draft Tube Spouted Bed Bioreactor,” Chemical Engineering Science, Vol. 47, No. 13-14, 1992, pp. 3581-3588. doi:10.1016/0009-2509(92)85073-K
[15] W. Sokol and B. Woldeyes, “Evaluation of the Inverse Fluidized Bed Biological Reactor for Treating High-Strength Industrial Wastewaters,” Advances in Chemical Engineering and Science, Vol. 1, No. 4, 2011, pp. 239-244.