Back
 MSA  Vol.1 No.2 , June 2010
Nonequilibrium Diffusion of Boron in SiC at Low Temperatures
Abstract: Nonequilibrium diffusion of Boron in 3C SiC was performed using a flow of carbon vacancies. The temperature of diffusion was 1150-1250℃ and concentration of Boron in doped area reached about 1019 to 1020 cm-3. It is shown that after thermal annealing in vacuum the characteristics of fabricated structures are close to those of the structures made by the conventional technology.
Cite this paper: nullI. Atabaev, T. Saliev, E. Bakhranov, D. Saidov, K. Juraev, C. Tin, V. Adedeji, B. Atabaev and N. Saidkhanova, "Nonequilibrium Diffusion of Boron in SiC at Low Temperatures," Materials Sciences and Applications, Vol. 1 No. 2, 2010, pp. 53-58. doi: 10.4236/msa.2010.12010.
References

[1]   M. Laube, G. Pensl and H. Itoh, “Suppressed Diffusion of Implanted Boron in 4H-SiC,” Applied Physics Letters, Vol. 74, No. 16, 1999, pp. 2292-2295.

[2]   H. Bracht, N. A. Stolwijk, M. Laube and G. Pensl, “Diffusion of Boron in Silicon Carbide: Evidence for the Kick-Out Mechanism,” Applied Physics Letters, Vol. 77, No. 20, 2000, pp. 3188-3190.

[3]   I. G. Atabaev, T. M. Saliev and E. N. Bakhranov, “Method of Diffusion of Boron in Silicon Carbide,” Patent of Uzbekistan IDP 05199.

[4]   C.C.Tin, et al., “Low Temperature Impurity Doping of Silicone Carbide,” US Patent Application Publication,” No: US 2009/0039469 A1, 12 February 2009.

[5]   I. G. Atabaev, T. M. Soliev, N. A. Matchanov, B. G Atabaev, N. G. Saidkhanova, F. R. Yuzikaeva and C. C. Tin, “The Investigation of Cluster Composition of Low Temperature Boron Doped SIC Surface/EuroSIMS 2006, Muenster, Germany, 24-26 September, 2006, p. 18.

[6]   L. A. Yu, “Space Waves of Non-Equilibrium Carriers In Semiconductors With Metastable Defects,” Applied Solar Energy, Vol. 41, No. 1, 2005, pp. 6-10.

[7]   K. Rüschenschmidt, H. Bracht, M. Laube, N. A. Stolwijk and G. Pensl, “Diffusion of Boron in Silicon Carbide,” Physica B: Condensed Matter, Vol. 308-310, December 2001, pp. 734-737.

[8]   Y. Gao, S. I. Soloviev and T. S. Sudarshan, “Investigation of Boron Diffusion in 6H-SiC,” Applied Physics Letters, Vol. 83, No. 5, August 2003, pp. 905-907.

[9]   I. Girka and E. N. Mokhov, “Vacancy Defects in Silicon Carbide,” Physics of Solid State, Vol. 37, No. 11, November 1995, pp. 1855-1858.

[10]   K. Mochizuki, H. Shimizu and N. Yokoyama, “Dual- Sublattice Modeling and Semi-Atomistic Simulation of Boron Diffusion in 4H-Silicon Carbide,” Japanese Journal of Applied Physics, Vol. 48, 2009, pp. 1-6.

[11]   P. G. Baranov, I. V. Il’in and E. N. Mokhov, “Electron Paramagnetic Resonance of Deep Boron Acceptors in 4H-SiC and 3C-SiC Crystals,” Physics of the Solid State, Vol. 40, No. 1, 1998, pp. 31-34.

[12]   A. Mattausch. Ab initio-Theory of Point Defects And Defect Complexes in SiC//Den Naturwissensc- ftlichen Fakultäten,” Der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangungdes Doktorgrades, 2005.

[13]   I. G. Atabaev, T. M. Saliev, E. N. Bakhranov, N. A. Matanov, S. L. Lutpullaev, C. C. Tin, J. Zhang, B. G. Atabaev, N. G. Saidkhanova, F. R. Yuzikaeva, I. Nuritdinov, A. K. Islomov, M. Z. Amanov, E. Rusli and A. Kumta, “Diffusion and Electroluminescence Studies of Low Temperature Diffusion of Boron in 3C-SiC,” Materials Science Forum, Vol. 600-603, 2009, pp 457- 460.

[14]   J. E. Lowther, “Vacancies and Divacancies in Cubic Silicon Carbide,” Journal of Physics C: Solid State Physics, Vol. 10, No. 14, 1977, pp. 2501-2509.

 
 
Top