MSA  Vol.1 No.2 , June 2010
Nonequilibrium Diffusion of Boron in SiC at Low Temperatures
Nonequilibrium diffusion of Boron in 3C SiC was performed using a flow of carbon vacancies. The temperature of diffusion was 1150-1250℃ and concentration of Boron in doped area reached about 1019 to 1020 cm-3. It is shown that after thermal annealing in vacuum the characteristics of fabricated structures are close to those of the structures made by the conventional technology.

Cite this paper
nullI. Atabaev, T. Saliev, E. Bakhranov, D. Saidov, K. Juraev, C. Tin, V. Adedeji, B. Atabaev and N. Saidkhanova, "Nonequilibrium Diffusion of Boron in SiC at Low Temperatures," Materials Sciences and Applications, Vol. 1 No. 2, 2010, pp. 53-58. doi: 10.4236/msa.2010.12010.
[1]   M. Laube, G. Pensl and H. Itoh, “Suppressed Diffusion of Implanted Boron in 4H-SiC,” Applied Physics Letters, Vol. 74, No. 16, 1999, pp. 2292-2295.

[2]   H. Bracht, N. A. Stolwijk, M. Laube and G. Pensl, “Diffusion of Boron in Silicon Carbide: Evidence for the Kick-Out Mechanism,” Applied Physics Letters, Vol. 77, No. 20, 2000, pp. 3188-3190.

[3]   I. G. Atabaev, T. M. Saliev and E. N. Bakhranov, “Method of Diffusion of Boron in Silicon Carbide,” Patent of Uzbekistan IDP 05199.

[4]   C.C.Tin, et al., “Low Temperature Impurity Doping of Silicone Carbide,” US Patent Application Publication,” No: US 2009/0039469 A1, 12 February 2009.

[5]   I. G. Atabaev, T. M. Soliev, N. A. Matchanov, B. G Atabaev, N. G. Saidkhanova, F. R. Yuzikaeva and C. C. Tin, “The Investigation of Cluster Composition of Low Temperature Boron Doped SIC Surface/EuroSIMS 2006, Muenster, Germany, 24-26 September, 2006, p. 18.

[6]   L. A. Yu, “Space Waves of Non-Equilibrium Carriers In Semiconductors With Metastable Defects,” Applied Solar Energy, Vol. 41, No. 1, 2005, pp. 6-10.

[7]   K. Rüschenschmidt, H. Bracht, M. Laube, N. A. Stolwijk and G. Pensl, “Diffusion of Boron in Silicon Carbide,” Physica B: Condensed Matter, Vol. 308-310, December 2001, pp. 734-737.

[8]   Y. Gao, S. I. Soloviev and T. S. Sudarshan, “Investigation of Boron Diffusion in 6H-SiC,” Applied Physics Letters, Vol. 83, No. 5, August 2003, pp. 905-907.

[9]   I. Girka and E. N. Mokhov, “Vacancy Defects in Silicon Carbide,” Physics of Solid State, Vol. 37, No. 11, November 1995, pp. 1855-1858.

[10]   K. Mochizuki, H. Shimizu and N. Yokoyama, “Dual- Sublattice Modeling and Semi-Atomistic Simulation of Boron Diffusion in 4H-Silicon Carbide,” Japanese Journal of Applied Physics, Vol. 48, 2009, pp. 1-6.

[11]   P. G. Baranov, I. V. Il’in and E. N. Mokhov, “Electron Paramagnetic Resonance of Deep Boron Acceptors in 4H-SiC and 3C-SiC Crystals,” Physics of the Solid State, Vol. 40, No. 1, 1998, pp. 31-34.

[12]   A. Mattausch. Ab initio-Theory of Point Defects And Defect Complexes in SiC//Den Naturwissensc- ftlichen Fakultäten,” Der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangungdes Doktorgrades, 2005.

[13]   I. G. Atabaev, T. M. Saliev, E. N. Bakhranov, N. A. Matanov, S. L. Lutpullaev, C. C. Tin, J. Zhang, B. G. Atabaev, N. G. Saidkhanova, F. R. Yuzikaeva, I. Nuritdinov, A. K. Islomov, M. Z. Amanov, E. Rusli and A. Kumta, “Diffusion and Electroluminescence Studies of Low Temperature Diffusion of Boron in 3C-SiC,” Materials Science Forum, Vol. 600-603, 2009, pp 457- 460.

[14]   J. E. Lowther, “Vacancies and Divacancies in Cubic Silicon Carbide,” Journal of Physics C: Solid State Physics, Vol. 10, No. 14, 1977, pp. 2501-2509.