JMMCE  Vol.9 No.5 , May 2010
Synthesis, Crystal Growth, Structural, Optical, Thermal and Mechanical Properties of Semiorganic Nonlinear Optical Material: L-Cystine Dihydrochloride
ABSTRACT
L-Cystine dihydrochloride, a semiorganic nonlinear optical material, was synthesized and a single crystal was grown from aqueous solution. Low temperature (173 K) crystal structure measurement was carried out, and it reveals that the crystal belongs to noncentro symmetric space group C2. The structural perfection of the grown crystal was analyzed by high-resolution X-ray diffraction (HRXRD) rocking curve measurements. Fourier transform infrared (FTIR) spectroscopic studies were also performed for the identification of different vibrational modes of the fundamental groups present in the compound. The UV–vis transmission spectrum was recorded in the range 200–1000 nm. The second harmonic conversion efficiency was determined using the Kurtz powder technique; which is 0.35 times that of KDP. Thermal properties of LCystine Dihydrochloride were studied by TGA and DTA.

Cite this paper
T. Devi, N. Lawrence, R. Rameshbabu, S. Selvanayagam, H. Stoeckli-Evans, G. Bhagavannarayana and K. Ramamurthi, "Synthesis, Crystal Growth, Structural, Optical, Thermal and Mechanical Properties of Semiorganic Nonlinear Optical Material: L-Cystine Dihydrochloride," Journal of Minerals and Materials Characterization and Engineering, Vol. 9 No. 5, 2010, pp. 495-507. doi: 10.4236/jmmce.2010.95035.
References
[1]   P.N. Prasad and D.J. Williams. Introduction to Nonlinear Optical Effects on Molecules and Polymers, Wiley, New York (1991)

[2]   D.S. Chemla and J. Zyss. In: Nonlinear Optical Properties of Organic Molecules and Crystals Vols. 1 and 2, Academic Press, Orlando (1987).

[3]   M. Fleck, P. Becker, L. Bayarjargal, R. Ochrombel, L.Bohaty, Cryst. Res. Technol. 2008, 43,127 –134.

[4]   V. Siva shankar, R. Siddheswaran, T. Bharthasarathi, P. Murugakoothan,J.Cryst. Growth 2009, 311, 2709-2713

[5]   E. de Matos Gomes, V.H. Rodrigues, M.M.R. Costa, M.S. Belsley, P.J.M. Cardoso, C.F. Gon?alves, F. Proen?a, J. Solid State Chem. 2006, 179, 2521-2528

[6]   R. Ittychan , P. Sagayaraj, J. Cryst.Growth 2002 ,243, 356 -360.

[7]   R.Ramesh Babu, N.Vijayan, R.Gopalakrishnan, P. Ramasamy ,Cryst. Res. Technol. 2006, 41, 405 – 410.

[8]   J. Madhavan, S. Aruna, P. C. Thomas, M. Vimalan, S. A. Rajasekar, and P. Sagayaraj, Cryst.Res. Technol. 2007, 42, 59 – 64.

[9]   R. Sathyalakshmi, V. Kannan, R. Bairava Ganesh, and P. Ramasamy Cryst. Res. Technol. 2007, 42, 78-83.

[10]   T. Uma Devi , N. Lawrence, R. Ramesh Babu, K. Ramamurthi J. Cryst. Growth 2008,310, 116-123.

[11]   T. Uma Devi , N. Lawrence, R. Ramesh Babu, K. Ramamurthi Spectrochim. Acta A 2008, 71, 340-343

[12]   T. Uma Devi , N. Lawrence, R. Ramesh Babu, S. Selvanayagam, Helen Stoeckli-Evans, K. Ramamurthi Cryst. Growth Des. 2009, 9, 1370 –1374.

[13]   T. Uma Devi , N. Lawrence, R. Ramesh Babu, K. Ramamurthi Mat. Res. India, 2008,5, 397-402

[14]   G. Bhagavannarayana, R.V. Ananthamurthy, G.C.Budakoti, B. Kumar, K.S. Bartwal, J. Appl. Cryst. 2005, 38, 768 -771.

[15]   E. Ramachandran, S. Natarajan, Cryst. Res. Technol. 2004, 39, 308-312.

[16]   K.Biemann, Tables of Spectral Data for Structure Determination of Organic Compounds, Springer Verlag, Berlin Heidelberg, 1989.

[17]   H. Li, R.C. Bradt, J. Hard Mater. 1992, 3, 403-419.

[18]   E.M.Onitsch, Mikroskopie 1947, 2, 131 -151.

[19]   N. Vijayan, R. Ramesh Babu, M. Gunasekaraan , R. Gopalakrishnan, R. Kumaresan, P. Ramasamy, C. W. Lan, J. Cryst. Growth 2003, 249, 309-315.

[20]   A.S.H. Hameed, G. Ravi, R. Dhanasekaran, P. Ramasamy, J. Crystal Growth 2000, 212, 227-232.

[21]   S.K. Kurz, T.T. Perry, J. Appl. Phys. 1968, 39, 3798 –813.

[22]   H.J. Ravindra, M.R. Suresh Kumar, C. Rai, S.M. Dharmaprakash, J. Cryst. Growth 2006, 294, 318-322

 
 
Top