JMMCE  Vol.9 No.4 , April 2010
Characterizing and Modeling Mechanical Properties of Nanocomposites-Review and Evaluation
ABSTRACT
This paper presents a critical review of the current work of experiment, theory of micro-nanomechanics, and numerical analysis on characterizing mechanical properties of nanocomposites. First, the classifications of nanomaterials are presented. Then nanoindentation testing and the corresponding finite element modeling are discussed, followed by analytical modeling stiffness of nanocomposites. The analytical models discussed include Voigt and Reuss bounds, Hashin and Shtrikman bounds, Halpin–Tsai model, Cox model, and various Mori and Tanaka models. These micromechanics models predict stiffness of nanocomposites with both aligned and randomly oriented fibers. The emphasis is on numerical modeling includes molecular dynamics modeling and finite element modeling. Three different approaches are discussed in finite element modeling, i.e. multiscale representative volume element (RVE) modeling, unit cell modeling, and object-oriented modeling. Finally, the mechanism of nanocomposite mechanical property enhancement and the ways to improve stiffness and fracture toughness for nanocomposites are discussed.

Cite this paper
H. Hu, L. Onyebueke and A. Abatan, "Characterizing and Modeling Mechanical Properties of Nanocomposites-Review and Evaluation," Journal of Minerals and Materials Characterization and Engineering, Vol. 9 No. 4, 2010, pp. 275-319. doi: 10.4236/jmmce.2010.94022.
References
[1]   Braun T, Schubert A, Zsindely S. Nanoscience and nanotechnology on the balance. Scientometrics 1997;38:321–325.

[2]   Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng 2000;28:1–63.

[3]   Herron N, Thorn DL. Nanoparticles: uses and relationships to molecular clusters. Adv Mater 1998;10:1173–84.

[4]   Kumar AP, Depan D, Tomer NS, Singh RP. Nanoscale particles for polymer degradation and stabilization-Trends and future perspectives. Progress in Polymer Science, 2009; 34: 479-515.

[5]   Vaia RA,Wagner HD. Framework for nanocomposites. Mater Today 2004;7:32–7.

[6]   Liu H, Brinson LC. Reinforcing efficiency of nanoparticles: A simple comparison for polymer nanocomposites. Compos Sci Technol 2008; 68: 1502-1512.

[7]   Thilly L, Petegem SV, Renault PO, Lecouturier F, Vidal V, Schmitt B, Swygenhoven V. A new criterion for elastio-plastic transition in nanomaterials: Application to size and composite effects on Cu-Nb nanocomposite wires. Acta Materialia 2009; 57: 3157-3169.

[8]   Dong Y, Bhattacharyya D, Hunter, PJ. Experiental Characterisation and object-oriented finite element modeling of polypropylene/organoclay nanocomposites. Comp Sci Technol 2008; 68: 2864-2875.

[9]   Chen Q, Chasiotis I, Chen C, Roy A. Nanoscale and effective mechanical behavior and fracture of silica nanocomposites. Comp Sci Technol. 2008; 68: 3137-3144.

[10]   Chen WH, Cheng HC, Hsu YC, Uang RH, Hsu JS. Mechanical material characterization of Co nanowires and their nanocomposite. Comp Sci Technol 2008; 68: 3388-3395.

[11]   Song SY, Youn JR. Modelling of effective elastic properties of polymer based carbon nanotube composites. Polymer 2006; 47, 1741-1748.

[12]   Schuster, BE, Wei Q, Ervin MH, Hruszkewycz SO, Miller MK, Hufnagel TC, Ramesh KT. Bulk and microscale compressive properties of a pd-based metallic glass. Scripta Materialia 2007; 57 (6), 517-520.

[13]   Zhang H, Schuster BE, Wei Q, Ramesh KT. The design of accurate micro-compression experiments. Scripta Materialia 2006, 54(2), 181-186.

[14]   Chang NK, Lin YS, Chen CY, Chang SH. Size effect of indenter on determining modulus of nanowires using nanoindentation technique. Thin Solid Films 2009; 517: 3695-3697.

[15]   Poon B, Rittel D, Ravichandran D. An analysis of nanoindentation in linearly elastic solids. Int. J. Solids Struct. 2008; 45: 6018-6033.

[16]   Han CF, Lin JF. Modeling to evaluate the contact areas of hard materials during the nanoindentation tests. Sensors Actuators A 2008; 147(1): 229-241.

[17]   Ling Z, Hou J. A nanoindentation analysis of the effects of microstructures on elastic properties of Al2O3/SiC composites. Comp. Sci. Technol. 2007; 67: 3121-3129.

[18]   Lee SH, Wang S, Pharr GM, Xu H. Evaluation of interphase properties in a cellulose fiberreinforced polypropylene composite by nanoindentation and finite element analysis. Composites: Part A 2007; 38: 1517-1524.

[19]   Qi HJ, Teo KBK, Lau KKS, Boyce MC, Milne WI, Robertson J, Gleason KK. Determination of mechanical properties of carbon nanotubes and vertically aligned carbon nanotube forests using nanoindentation. J. Mech. Phy. Solids. 2003; 51: 2213-2237.

[20]   Li X, Bhushan B. A review of nanoindentation continuous stiffness measurement technique and its applications. Mater Charact. 2002; 48:11–36.

[21]   Gao SL, Mader E. Characterisation of interphase nanoscale property variations in glass fiber reinforced polypropylene and epoxy resin composites. Composites: Part A 2002; 33:559–576.

[22]   Hodzic A, Stachurskia ZH, Kim JK. Nano-indentation of polymer–glass interfaces part I experimental and mechanical analysis. Polymer 2000;41:6895–905.

[23]   Downing TD, Kumar R, Cross WM, Kjerengtroen L, Kellar JJ. Determining the interphase thickness and properties in polymer matrix composites using phase imaging atomic force microscopy and nanoindentation. J Adhes Sci Technol 2000;14:1801–12.

[24]   Munz M, Sturm H, Schulz E, Hinrichsen G. The scanning force microscope as a tool for the detection of local mechanical properties within the interphase of fiber reinforced polymers. Composites: Part A 1998; 29A:1251–9.

[25]   Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 1992; 7(6):1564–83.

[26]   Fong H, Sar?kaya M, White SN, Snead ML. Nanomechanical properties profiles across dentin—enamel junction of human incisor teeth, Mater. Sci. Eng. 2000; C7: 119—128.

[27]   Zysset PK, Guo XE, Hoffler CE, Moore KE, Goldstein SA. Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur, J. Biomech. 1999; 32: 1005—1012.

[28]   Habelitz S, Marshall GW, Balooch M, Marshall SJ. Nanoindentation and storage of teeth, J. Biomech. 2002; 35: 995—998.

[29]   Cuy JL, Mann AB, Livi KJ, Teaford MF, Weihs TP. Nanoindentation mapping of the mechanical properties of human molar tooth enamel. Arch. Oral Biol. 2002; 47: 281—291.

[30]   Marshall GW, Balooch M, Gallagher RR, Gansky SA, Marshall SJ. Mechanical properties of the dentinoenamel junction: AFM studies of nanohardness, elastic modulus, and fracture. J. Biomedic. Res. 2001; 54: 87—95.

[31]   Poolthong S, Mori T, Swain MV. Determination of elastic modulus of dentin by small spherical diamond indenters. J. Dent. Mater. 2001; 20: 227—236.

[32]   Habelitz S, Marshall SJ, Marshall GW, Balooch M. Mechanical properties of human dental enamel on the nanometer scale. Arch. Oral Biol. 2001; 46: 173—183.

[33]   Xu HHK, Smith DT, Jahanmir S, Romberg E, Kelly JR, Thompson VP, Rekow ED. Indentation damage and mechanical properties of human enamel and dentin. J. Dent. Res. 1998; 77: 472—480.

[34]   Kinney JH, Balooch M, Marshall SJ, Marshall GW, Wehs TP. Atomic force microscope measurements of the hardness and elasticity of peritubular and intertubular human dentin. J. Biomech. Eng. 1996; 118: 133—135.

[35]   Meredith N, Sherriff M, Setchell DJ, Sivanson SAV. Measurements of the microhardness and Young modulus of human enamel and dentin using an indentation technique. Arch. Oral Biol. 1996; 41: 539—545.

[36]   Kinney JH, Balooch M, Marshall SJ, Marshall GW, Weihs TP. Hardness and Young’s modulus of peritubular and intertubular dentine. Arch. Oral Biol. 1996; 41: 9-13.

[37]   van Meerbeek B, Willems G, Celis JP, Roos JR, Braem M, Lambrechts P, Vanherle G. Assessment by nanoindentation of the hardness and elasticity of the resin—dentin bonding area. J. Dent. Res. 1993; 72: 1434—1442.

[38]   Toparli M, Koksal NS. Hardness and yield strength of dentin from simulated nanoindentation tests. Comp Meth Progr Biomedi 2005; 77, 253-257.

[39]   Shin C, Jin HH, Kim MW. Evaluation of the depth-dependent yield strength of a nanoindented ion-irradiated Fe–Cr model alloy by using a finite element modeling. J. Nucl. Mater. 2009; 392(3): 476-481.

[40]   Li B, Gu YD, English R, Rothwell G, Ren XJ. Characterisation of nonlinear material parameters of foams based on indentation tests. Mater. Design 2009; 30(7): 2708-2714.

[41]   Wang, T.H., Fang, T.H., Lin, Y.C. A numerical study of factors affecting the characterization of nanoindentation on silicon. Mater. Sci. Eng. 2006; 447: 244–253.

[42]   Pelletier H, Krier J, Mille P. Characterization of mechanical properties of thin films using nanoindentation test. Mech. Mater. 2006; 38: 1182-1198.

[43]   Yu, N., Polycarpou, A.A., Conry, T.F. Tip-radius effect in finite element modeling of sub-50 Nm shallow nanoindentation. Thin Solid Films 2004; 450, 295–303.

[44]   Dao M, Chollacoop N, Vliet KJV, Venkatesh TA, Suresh S. Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 2001; 49, 3899–3918.

[45]   Zhang W, Subhash G. Finite element analysis of interacting Vickers indentations on brittle materials. Acta Mater. 2001; 49 (15): 2961-2974.

[46]   Zhang W, Subhash G. An elastic–plastic-cracking model for finite element analysis of indentation cracking in brittle materials. Int. J. Solids Struct. 2001; 38(34/35): 5893-5913.

[47]   Lichinchi, M., Lenardi, C., Haupta, J., Vitalib, R. Simulation of Berkovich nanoindentation experiments on thin films using finite element method. Thin Solid Films 1998; 312: 240–248.

[48]   Gan L, Ben-Nissan B. The effects of mechanical properties of thin films on nanoindentation data: Finite element analysis. Comp. Mater. Sci. 1997; 8: 273-281.

[49]   Zeng K, Giannakopoulos AE, Rowcliffe DJ. Vickers indentations in glass—II. Comparison of finite element analysis and experiments. Acta Metallur. Mater. 1995; 43: 1945-1954.

[50]   Kral ER, Komvopoulos K, Bogy DB. Elastic–plastic finite element analysis of repeated indentation of a half-space by a rigid sphere. J. Appl. Mech. 1993; 75: 829–841.

[51]   Wang HF, Yang X, Bangert H, Torzicky P, Wen L. Two-dimensional finite element method simulation of Vickers indentation of hardness measurements on TiN-coated steel.

[52]   Thin Solid Films 1992; 214: 68-73. Maritza GJ. Veprek-Heijman, Ratko G. Veprek, Ali S. Argon, David M. Parks and Stan Veprek. Non-linear finite element constitutive modeling of indentation into super- and ultrahard materials: The plastic deformation of the diamond tip and the ratio of hardness to tensile yield strength of super- and ultrahard nanocomposites. Surf. Coat. Technol. 2009; 203: 3385-3391.

[53]   Jiang W, Batra RC. Identification of elastic constants of FCC metals from 2D loadindentation curves. Comp. Mater. Sci. 2009; 45(2): 511-515.

[54]   Harsono E, Swaddiwudhipong S, Liu ZS. Material characterization based on simulated spherical-Berkovich indentation tests. Scrip. Mater. 2009; 60(11): 972-975.

[55]   Geng K, Yang F, Grulke EA. Nanoindentation of submicron polymeric coating systems. Mater. Sci. Eng. A. 2008; 479(1/2): 157-163.

[56]   Farrissey LM, McHugh PE. Determination of elastic and plastic material properties using indentation: Development of method and application to a thin surface coating. Mater. Sci. Eng A 2005; 399: 254-266.

[57]   Zeng K, Soderlund E, Giannakopoulos AE, Rowcliffe DJ. Controlled indentations: a general approach to determine mechanical properties of brittle materials. Acta Mater. 1996; 44: 1127-1141.

[58]   Yoshino M, Aoki T, Chandrasekaran N, Shirakashi T, Komanduri R. Finite element simulation of plane strain plastic–elastic indentation on single-crystal silicon. Int. J. Mech. Sci. 2001; 43 (2): 313-333.

[59]   Fisher FT, Brinson LC. Nanomechanics of nanoreinforced polymers. In: Rieth M, Schommers W, editors. Handbook of theoretical and computational nanoscience. American Scientific Publishers; 2006. 253–360.

[60]   Moniruzzaman M, Winey KI. Polymer nanocomposites containing carbon nanotubes. Macromolecules 2006;39(16):5194–5205.

[61]   Thostenson ET, Li CY, Chou TW. Nanocomposites in context. Compos Sci Technol 2005;65: 491–516.

[62]   Ajayan PM, Schadler LS, Braun PV. Nanocomposite science and technology. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA; 2003.

[63]   Srivastava D, Wei CY, Cho K. Nanomechanics of carbon nanotubes and composites. Appl Mech Rev 2003; 56: 215–30.

[64]   Leamy MJ. Bulk dynamic response modeling of carbon nanotubes using an intrinsic finite element formulation incorporating interatomic potentials. Int J Solids Struct 2007; 44: 874–94.

[65]   Odegard GM, Gates TS. Modeling and testing of the viscoelastic properties of a graphite nanoplatelet/epoxy composite. J Intell Mater Syst Struct 2006;17: 239–46.

[66]   Sears A, Batra RC. Buckling of multiwalled carbon nanotubes under axial compression. Phys Rev B 2006; 73:085410-1–085410-11.

[67]   Arroyo M, Belytschko T. Continuum mechanics modeling and simulation of carbon nanotubes. Meccanica 2005;40(4–6):455–69.

[68]   Odegard GM, Clancy TC, Gates TS. Modeling of the mechanical properties of nanoparticle/polymer composites. Polymer 2005; 46: 553–62.

[69]   Arroyo M, Belytschko T. Finite element methods for the non-linear mechanics of crystalline sheets and nanotubes. Int J Numer Methods Eng 2004;59(3):419–56.

[70]   Zhu LJ, Narh KA. Numerical simulation of the tensile modulus of nanoclay-filled polymer composites. J Polym Sci 2004; 42: 2391–406.

[71]   Wu YP, Jia QX, Yu DS, Zhang LQ. Modeling Young’s modulus of rubber–clay using composite theories. Polym Testing 2004; 23: 903–9.

[72]   Luo J-J, Daniel IM. Characterization and modeling of mechanical behaviour of polymer/clay nanocomposites. Compos Sci Technol 2003;63:1607–16.

[73]   Fornes TD, Paul DR. Modeling properties of nylon 6/clay nanocomposites using composite theories. Polymer 2003;44:4993–5013.

[74]   Voigt W. Uber die beziehung zwischen den beiden elasticitatsconstanten isotroper korper. Ann Phys 1889; 38:573–87.

[75]   Reuss A. Berechnung der fliebgrenze von mischkristalen auf grund der plastizitatsbedingung fur einkristalle. ZAMM 1929; 9:49–58.

[76]   Hashin Z, Shtrikman, S. A variational approach to the theory of the elastic behavior of multiphase materials. J Mech Phys Solids 1963; 11: 127-40.

[77]   Hashin Z, Analysis of composite materials-a survey. J. Appl. Mech. 1983; 50: 481-505.

[78]   Halpin JC. Primer on composite materials: analysis. Lancaster: Technomic Publishing Company; 1984.

[79]   Halpin JC, Kardos JL. The Halpin-Tsai equations: a review. Polym Eng Sci 1976; 16: 344-52.

[80]   Halpin JC. Stiffness and expansion estimates for oriented short fiber composites. J Compos Mater 1969; 3:742-4.

[81]   Halpin JC, Tsai SW. Effect of environmental factors on composite materials; Air Force Technical Report AFML-TR 67-423. Dayton, OH: Wright Aeronautical Laboratories; 1967.

[82]   Hermans JJ. The elastic properties of fiber oriented materials when the fibers are aligned. Proc Kon Ned Akad v Wetensch B 1967; 65: 1-9.

[83]   Hill R. Theory of mechanical properties of fibre-strengthened materials: I elastic behaviour. J Mech Phys Solids 1964; 12: 199-212.

[84]   Mori T, Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 1973; 21:571–4.

[85]   Eshelby JD. The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc R Soc London A 1957; 241:376–96.

[86]   Taya M, Mura T. On stiffness and strength of an aligned short-fiber reinforced composite containing fiber-end cracks inder uniaxial applied stress. J Appl Mech 1981; 48: 361-7.

[87]   Taya M, Chou T-W. On two kinds of ellipsoidal inhomogeneities in an infinite elastic body: an application to a hybrid composite. Int J Solids Struct 1981; 17: 553-63.

[88]   Weng GJ. Some elastic properties of reinforced solids, with special reference to isotropic ones containing spherical inclusions. Int J Engng Sci 1984; 22 :845-56.

[89]   Tandon GP, Weng GJ. The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composites. Polym Compos 1984;5:327–33.

[90]   Hui CY, Shia D. Simple formulae for the effective moduli of unidirectional aligned composites. Polym Eng Sci 1998;38:774–82.

[91]   Shia D, Hui CY, Burnside SD, Giannelis EP. An interface model for the prediction of Young’s modulus of layered silicate-elastomer nanocomposites. Polym Compos 1998;19:608–17.

[92]   Qiu YP, Weng GJ. On the application of Mori-Tanaka’s theory involving transversely isotropic spheroidal inclusions. Int J Eng Sci 1990; 28: 1121-37.

[93]   Chen T, Dvorak GJ, Benveniste Y. Mori-Tanaka estimate of the overall elastic moduli of certain composite materials. J Appl Mech 1992; 59: 539-46.

[94]   Wang J, Pyrz R. Prediction of the overall moduli of layered silicate-reinforced nanocomposites-part I: basic theory and formulas. Compos Sci Tech 2004;64:925-934.

[95]   Cox HL. The elasticity and strength of paper and other fibrous materials. Brit J Appl Phys 1952; 3: 72-9.

[96]   Tucker III CL, Liang E. Stiffness prediction for unidirectional short-fiber composites: Review and evaluation. Compos Sci Tech 1999; 59: 655-671.

[97]   Van Es M, Xiqiao F, Van Turnhout, Van der Giessen E. Comparing polymer-clay nanocomposites with conventional composites using composite modeling. In: Al-Malaika S, Golovoy AW, editors. Specially polymer additives: principles and applications. CA Malden, MA: Blackwell Science; 2001. Chapter 21.

[98]   Rapaport DC. The Art and Science of Molecular Dynamics Simulation. Cambridge: Cambridge University Press; 2004.

[99]   Frenkel D, Smit B. Understanding molecular simulation: from algorithms to applications. 2nd ed. San Diego: Academic Press; 2002.

[100]   Zeng QH, Yu AB, Lu GQ. Multiscale modeling and simulation of polymer nanocomposites. Prog. Polym. Sci. 2008; 33: 191–269

[101]   Cornwell CF, Wille LT. Elastic properties of single-walled carbon nanotubes in compression. Solid State Commun 1997;101:555–8.

[102]   Zhu R, Pan E, Roy AK. Molecular dynamics study of the stress-strain behavior of carbonnanotube reinforced Epon 862 composites. Mater Sci Eng A 2007; 447: 51-57.

[103]   Mokashi VV, Qian D, Liu YJ. A study on the tensile response and fracture in carbon nanotube-based composites using molecular mechanics. Compos Sci Technol 2007;67:530–40.

[104]   Zheng QB, Xue QZ, Yan KO, Hao LZ, Li Q, Gao XL. Investigation of molecular interactions between SWNT and polyethylene/polypropylene/polystyrene/ polyaniline molecules. J Phys Chem C 2007;111:4628–35.

[105]   Sun X, Zhao W. Prediction of stiffness and strength of single-walled carbon nanotubes by molecular-mechanics based finite element approach. Mater Sci Eng 2005; 390: 366-71.

[106]   Xiao JR, Gama BA, Gillespie Jr JW. An analytical molecular structural mechanics model for the mechanical properties of carbon nanotubes. Int J Solids Struct 2005; 42: 3075-92.

[107]   Bao WX, Zhu CC, Cui WZ. Simulation of Young’s modulus of single-walled carbon nanotubes by molecular dynamics. Physica B. 2004; 352: 156-63.

[108]   Saether E, Frankland SJV, Pipes RB. Transverse mechanical properties of single-walled carbon nanotube crystals. Part I: determination of elastic moduli. Compos Sci Tech 2003;63:1543-50.

[109]   Odegard GM, Gates TS, Wise KE, Park C, Siochi EJ. Constitutive modeling of nanotube–reinforced polymer composites. Compos Sci Tech 2003; 63: 1671-87.

[110]   Scarpa F, Adhikari S, Phani AS. Effective elastic mechanical properties of single layer grapheme sheets. Nanotechnology 2009; 20: 065709.

[111]   Hemmasizadeh A, Mahzoon M, Hadi E, Khandan R. A method for developing the equivalent continuum model of single layer grapheme sheet. Thin Solid Films 2008; 516: 7636-40.

[112]   Cho J, Luo JJ, Danial IM. Mechanical characterization of graphite/epoxy nanocomposites by multi-scale analysis. Compos Sci Tech 2007; 67: 2399-407.

[113]   Prathab B, Subramanian V, Aminabhavi TM. Molecular dynamics simulations to investigate polymer–polymer and polymer–metal oxide interactions. Polymer 2007;48: 409–16.

[114]   Suter JL, Coveney PV, Greenwell HC, Thyveetil MA. Large-scale molecular dynamics study of montmorillonite clay: emergence of undulatory fluctuations and determination of material properties. J Phys Chem C 2007;111: 8248–59.

[115]   Ward DK, Curtin WA, Qi Y. Mechanical behavior of aluminum-silicon nanocomposites: A molecular dynamics study. Acta Materialia 2006; 54: 4441-51.

[116]   Patel RR, Mohanraj R, Pittman CU. Properties of polystyrene and polymethyl methacrylate copolymers of polyhedral oligomeric silsesquioxanes: a molecular dynamics study. J Polym Sci Part B: Polym Phys 2006;44: 234–48.

[117]   Bizet S, Galy J, Gerard JF. Molecular dynamics simulation of organic–inorganic copolymers based on methacryl–POSS and methyl methacrylate. Polymer 2006;47:8219–27.

[118]   Minisini B, Tsobnang F. Molecular dynamics study of specific interactions in grafted polypropylene organomodified clay nanocomposite. Compos Part A: Appl Sci Manuf 2005;36:539–44.

[119]   Sen TZ, Sharaf MA, Mark JE, Kloczkowski A. Modeling the elastomeric properties of stereoregular polypropylenes in nanocomposites with spherical fillers. Polymer 2005;46:7301–8.

[120]   Lau K, Gu C, Hui D. A critical review on nanotube and nanotube/nanoclay related polymer composite materials. Composites: Part B 2006; 37: 425–436.

[121]   Smith W, Forester TR. DLPOLY-2.14 manual; 2004. Internet Source: http://www.cse.clrc.ac.uk/msi/software/DL_POLY/MANUALS/USRMAN2.pdf.

[122]   Smith W, Forester TR. DL_POLY_2.0: A general-purpose parallel molecular dynamics simulation package. J Mol Graph 1996; 14: 136-41.

[123]   Plimpton SJ. LAMMPS Documentation. Internet Source: http://www.cs.sandia.gov/~sjplimp/lammps/doc/Manual.html.

[124]   Ponder JW. TINKER: Software tools for molecular design, Version 3.8. Washington University School of Medicine; 1998.

[125]   Adnan A, Sun CT, Mahfuz H. A molecular dynamics simulation study to investigate the effect of filler size on elastic properties of polymer nanocomposites. Compos Sci Technol 2007;67:348–56.

[126]   Mayo SL, Olafson BD, Goddard III WA. DREIDING: A generic force field for molecular simulations. J Phys Chem 1990; 94: 8897–909.

[127]   Binder K. Monte carlo and molecular dynamics simulations in polymer science. New York: Oxford University Press; 1995.

[128]   Broutman LJ, Panizza G. Micromechanics studies of rubber-reinforced glassy polymers. Int J Polymeric Mat 1971; 1: 95-109.

[129]   Agarwal BD, Broutman LJ. Three-dimensional finite element analysis of spherical particle composites. Fibre Sci Tech 1974; 7: 63-77.

[130]   Needleman A. A continuum model for void nucleation by inclusion debonding. J Appl Mech 1987; 54: 525-531.

[131]   Christman T, Needleman A, Suresh S. An experimental and numerical study of deformation of metal-ceramic composites. Acta Metall Mater 1989; 37: 3029-50.

[132]   Llorca J, Needleman A, Suresh S. An analysis of the effects of matrix void growth on deformation and ductility in metal-ceramic composites. Acta Metall Mater 1991; 39: 2317-35.

[133]   Tvergaard V. Analysis of tensile properties for a whisker-reinforced metal-matrix composite. Acta Metall Mater1990; 38: 185-94.

[134]   Lee BJ, Mear ME. Effect of inclusion shape on stiffness of isotropic and transversely isotropic two-phase composites. Int J Solids Struct 1991; 28: 975-1001.

[135]   Lee BJ, Mear ME. Effect of inclusion shape on stiffness of nonlinear two-phase composites. J Mech Phys Solids 1991; 39: 627-49.

[136]   Banks-Sills L, Leiderman V, Fang D. On the effect of particle shape and orientation on elastic properties of metal matrix composites. Composites: Part B 1997; 28B:465-81.

[137]   Iijima S. Helical microtubles of graphitic carbon. Nature 1991; 354: 56-8.

[138]   Treacy MMJ, Ebbesen TW, Gibson TM. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 1996; 381: 680-7.

[139]   Popov VN, Van Doren EV, Balkanski M. Elastic properties of single-walled carbon nanotubes. Phys Rev B 2000; 61: 3078-84.

[140]   Uddin MF, Sun CT. Strength of unidirectional glass/epoxy composite with silica nanoparticle-enhanced matrix. Compos Sci Technol 2008; 68: 1637-43.

[141]   Zhang J, Wu T, Wang L, Jiang W, Chen L. Microstructure and properties of Ti3 SiC2/SiC nanocomposites fabricated by spark plasma sintering. Compos Sci Technol 2008; 68: 499-505.

[142]   Tsai JL, Wu MD. Organoclay effect on mechanical responses of glass/epoxy nanocomposites. J Compos Mater 2007; 41: 2513.

[143]   Cho J, Chen JY, Daniel IM. Mechanical enhancement of carbon fiber/epoxy composites by graphite nanoplatelet reinforcement. Scripta Mater 2007; 56: 685.

[144]   Kanagaraj S, Varanda FR, Zhiltsova TV, Oliveira MSA, Simoes JAO. Mechanical properties of high density polyethylene/carbon nanotube composites. Compos Sci Technol 2007; 67: 3071-7.

[145]   Katti KS, Sikdar D, Katti DR, Ghosh P, Verma D. Molecular interactions in intercalated organically modified clay and clay-polycaprolactam nanocomposites: experiments and modeling. Polymer 2006; 47: 403-14.

[146]   Wang ZD, Lu JJ, Li Y, Fu SY, Jiang SQ, Zhao XX. Studies on thermal and mechanical properties of PI/SiO2 nanocomposite films at low temperature. Composite A 2006; 37: 74-9.

[147]   Buryachenko VA, Roy A, Lafdi K, Anderson KL, Chellapilla S. Multi-scale mechanics of nanocomposites including interface: experimental and numerical investigation. Compos Sci Technol 2005; 65: 2435-65.

[148]   Dalton BA, Collins S, Munoz E, Razal MJ, Von Howaed E, Ferraris PJ, et al. Super-tough carbon-nanotube fibers. Nature 2003; 423: 703-5.

[149]   Zhu HW, Xu CL, Wu DH, Wei BQ, Vajtai R, Ajayan PM. Direct synthesis of long singlewalled carbon nanotube strands. Science 2002; 296: 884-6.

[150]   Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS. Strength and breaking mechanics of multiwalled carbon nanotubes under tensile load. Science 2000; 287: 637-40.

[151]   Li F, Cheng HM, Bai S, Su G, Dresselhaus MS. Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes. Appl Phys Lett 2000; 77: 3161-3.

[152]   Bower C, Rosen R, Jin L, Han J, et al. Deformation of carbon nanotubes in nanotubepolymer composites. Appl Phys Lett 1999; 74: 3317-19.

[153]   Schadler LS,Giannaris SC, Ajayan PM. Load transfer in carbon nanotube epoxy composites. Appl Phys Lett 1998; 73: 3842-44.

[154]   Wagner HD, Lourie O, Feldman Y, Tenne R. Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix. Appl Phys Lett 1998; 72: 188-90.

[155]   Wong EW, Sheehan PE, Lieber CM. Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 1997; 277: 1971-5.

[156]   Boutaleb S, Zairi F, Mesbah A, Nait-Abdelaziz M, Gloaguen JM, Boukharouba T, Lefebvre JM. Micromechanics-based modeling of stiffness and yield stress for silica/polymer nanocomposites. Int J Solids Struct 2009; 46: 1716-26.

[157]   Ashrafi B, Hubert P. Modeling the elastic properties of carbon nanotube array/polymer composites. Compos Sci Technol 2006; 66: 387-96.

[158]   Berhan L, Yi YB, Sastry AM, Munoz E, Selvidge M, Baughman RJ. Mechanical properties of nanotube sheets: Alterations in joint morphology and achievable moduli in manufacturable materials. Appl Phys 2004; 95: 4335-45.

[159]   Odegard GM, Pipes RB, Hubert P. Comparison of two models of SWCN polymer composites. Comp Sci Technol 2004; 64: 1011-20.

[160]   Thostenson ET, Chou TW. On the elastic properties of carbon nanotube-based composites: modeling and characterization. J Appl Phys D 2003; 36: 573-82.

[161]   Pipes RB, Hubert P. Scale effects in carbon nanostructures: self-similar analysis. Nano Lett 2003; 3: 239-43.

[162]   Pipes RB, Hubert P. Helical carbon nanotube arrays: mechanical properties. Comps Sci Technol 2002; 62: 419-28.

[163]   Tu ZC, Ou-yang ZC. Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young’s moduli dependent on layer number. Phys Rev B 2002; 65:233-407.

[164]   Zhou G, Duan WH, Gu BL. First-principles study on morphology and mechanical properties of single-walled carbon nanotube. Chem Phys Lett 2001; 333: 344-9.

[165]   Qian D, Liu WK, Ruoff RS. Mechanics of C60 in nanotubes. J Phys Chem B 2001; 105: 10753-8.

[166]   Govindjee S, Sackman JL. On the use of continuum mechanics to estimate the properties of nanotubes. Solid State Comm 1999; 110: 227-30.

[167]   Gao GH, Cagin T, Goddard WA. Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes. Nanotech 1998; 9: 184-91.

[168]   Krishnan A, Dujardin E, Ebbesen TW, Yianilos PN, Treacy MMJ. Young’s modulus of single-walled nanotubes. Phys Rev B 1998; 58: 14013-9.

[169]   Cornwell CF, Wille LT. Elastic properties of single-walled carbon nanotubes in compression. Solid State Comm 1997; 101: 555-8.

[170]   Lee WJ, Son JH, Kang NH, Park IM, Park YH. Finite-element analysis of deformation behaviors in random-whisker-reinforced composite. Scripta Mater 2009; 61: 580-3.

[171]   Qiao R, Brinson C. Simulation of interphase percolation and gradients in polymer nanocomposites. Compos Sci Technol 2009; 69: 491-9.

[172]   Tserpes KI, Papanikos P, Labeas G, Pantelakis SpG. Multi-scale modeling of tensile behavior of carbon nanotube-reinforced composites. Theoret Appl Fract Mech 2008; 49: 51-60.

[173]   Gonzalez C, Llorca J. Mechanical behavior of unidirectional fiber-reinforced polymers under transverse compression: microscopic mechanisms and modeling. Compos Sci Technol 2007; 67: 2795-806.

[174]   Saber-Samandari S, Afaghi-Khatibi A. Evaluation of elastic modulus of polymer matrix nanocomposites. Polym Compos 2007; 28: 405-11.

[175]   Scocchi G, Posocco P, Fermeglia M, Pricl S. Polymer–clay nanocomposites: a multiscale molecular modeling approach. J Phys Chem B 2007;111:2143–51.

[176]   Fermeglia M, Pricl S. Multiscale modeling for polymer systems of industrial interest. Prog Org Coat 2007;58:187–99.

[177]   Hbaieb K, Wang QX, Chia YHJ, Cotterell B. Modeling stiffness of polymer/clay nanocomposites. Polymer 2007; 48: 901-9.

[178]   Chawla N, Sidhu RS, Ganesh VV. Three-dimansional visualization and microstructurebased modeling of deformation in particle-reinforced composits. Acta Mater 2006; 54: 1541-8.

[179]   Cannillo V, Bondioli F, Lusvarghi L, Montorsi M, Avella M, Errico ME, Malinconico M. Modeling of ceramic particles filled polymer-matrix nanocomposites. Compos Sci Technol 2006; 66: 1031-7.

[180]   Li C, Chou TW. Multiscale modeling of compressive behavior of carbon nanotube/polymer composites. Compos Sci Technol 2006; 66: 2409-14.

[181]   Ji B, Gao H. Elastic properties of nanocomposite structure of bone. Compos Sci Technol 2006; 66: 1212-8.

[182]   Bondioli F, Cannillo V, Fabbri E, Messori M. Epoxy-silica nanocomposites: preparation, experimental characterization, and modeling. J Appl Polym Sci 2005; 97: 2382-2386.

[183]   Borodin O, Bedrov D, Smith GD, Nairn J, Bardenhagen S. Multiscale modeling of viscoelastic properties of polymer nanocomposites. J Polym Sci Part B: Polym Phys 2005; 43:1005–13.

[184]   Buryachenko VA. Effective elastic moduli of triply periodic particulate matrix composites with imperfect unit cells. Int J Solids Struct 2005;42:4811–32.

[185]   Shi D, Feng X, Jiang H, Huang YY, Hwang K. Multiscale analysis of fracture of carbon nanotubes embedded in composites. Int J Fract 2005; 134: 369–86.

[186]   Buryachenko VA, Tandon GP. Estimation of effective elastic properties of random structure composites for arbitrary inclusion shape and anisotropy of components using finite element analysis. Int J Multiscale Comput Engng 2004;2:29–45.

[187]   Avella M, Bondioli F, Cannillo V, Errico ME, Ferrari AM, Focher B. Preparation, characterisation and computational study of poly (epsilon-caprolactone) based nanocomposites. Mater Sci Technol 2004;20:1340–4.

[188]   Chen XL, Liu YJ. Square representative volume elements for evaluating the effective material properties of carbon nanotube-based composites. Comput Mater Sci 2004; 29: 1-11.

[189]   Sheng N, Boyce MC, Parks DM, Rutledge GC, Abes JI, Cohen RE. Multiscale micromechanical modeling of polymer nanocomposites and the effective clay particle. Polymer 2004; 45:487–506.

[190]   Porter D. Pragmatic multiscale modelling of bone as a natural hybrid nanocomposite. Mater Sci Eng A 2004; 365:38–45.

[191]   Fisher FT, Bradshaw RD, Brinson LC. Fiber waviness in nanotube-reinforced polymer composites-1: modulus predictions using effective nanotube properties. Compos Sci Technol 2003;63:1689–703.

[192]   Bradshaw RD, Fisher FT, Brinson LC. Fiber waviness in nanotube-reinforced polymer composites-II: modeling via numerical approximation of the dilute strain concentration tensor. Compos Sci Technol 2003;63:1705–22.

[193]   Li C, Chou TW. A structural mechanics approach for the analysis of carbon nanotubes. Int J Solids Struct 2003;40:2487–99.

[194]   Liu YJ, Chen XL. Evaluations of the materials properties of carbon nanotube-based composites using a nanoscale representative volume element. Mech Mater 2003; 35: 69-81.

[195]   Odegard GM, Gates TS, Nicholson LM, Wise KE. Equivalent continuum modeling of nano-structured materials. Compos Sci Technol 2002;62:1869–80.

[196]   Starr FW, Glotzer SC. Simulations of filled polymers on multiple length scales. In: Nakatani AI, Hjelm RP, Gerspacher M, Krishnamoorti R, editors. Filled and Nanocomposite Polymer Materials, Materials Research Symposium Proceedings. Warrendale: Materials Research Society, 2001. pp. KK4.1.1–KK4.1.13.

[197]   Glotzer SC, Starr FW. Towards multiscale simulations of filled and nanofilled polymers. In: Cummings PT, Westmoreland PR, Carnahan B, editors. Foundations of Molecular Modeling and Simulation: Proceedings of the 1st international conference on molecular modeling and simulation. Keystone: American Institute of Chemical Engineers, 2001. pp. 44–53.

[198]   Ogata S, Lidorikis E, Shimojo F, Nakano A, Vashishta P, Kalia RK. Hybrid finiteelement/ molecular-dynamics/electronic-density-functional approach to materials simulations on parallel computers. Comp Phys Comm 2001; 138: 143-54.

[199]   Hyer MW. Stress analysis of fiber-reinforced composite materials. McGraw-Hill, Boston, 1998.

[200]   Nemat-Nasser S, Hori M. Micromechanics: Overall properties of heterogeneous materials. Elsevier, Amsterdam, 1999.

[201]   Zhang P, Huang Y, Geubelle PH, Klein PA, Hwang KC. The elastic modulus of singlewall carbon nanotubes: a continuum analysis incorporating interatomic potential. Int J Solids Struct 2002;39: 3893–906.

[202]   Tserpes KI, Papanikos P. A progressive fracture model for carbon nanotubes. Compos Part B 2006; 37: 662-9.

[203]   Belytschko T, Xiao S, Schatz G, Ruoff R. Atomistic simulations of nanotube fracture. Phys Rev B 2002; 65: 235430.

[204]   Steglich D, Siegmund T, Brocks W. Micromechanical modeling of damage due to particle cracking in reinforced metals. Comput Mater Sci 1999; 16: 404-13.

[205]   Langer SA, Fuller ER, Carter WC. OOF: an image-based finite element analysis of material microstructures. Comput Sci Eng 2001;3:15–23.

[206]   Langer SA, Reid ACE, Haan SI, Garcia RE. The OOF2 manual: Revision 3.2 for OOF2 Version 2.0 beta 8, NIST, USA. Online: http://www.ctcms.nist.gov/~langer/oof2man/index.html.

[207]   Ganesh VV, Chawla N. Effect of particle orientation anisotropy on the tensile behavior of metal matrix composites: experiments and microstructure-based simulation. Mater Sci Eng A 2005; 391: 342-53.

[208]   Cannillo V, Manfredini T, Montorsi M, Boccaccini AR. Use of numerical approaches to predict mechanical properties of brittle bodies containing controlled porosity. J Mater Sci 2004;39:4335–7.

[209]   Cannillo V, Manfredini T, Montorsi M, Boccaccini AR. Investigation of the mechanical properties of Mo-reinforced glassmatrix composites. J Non-Crystal Solids 2004;344:88–93.

[210]   Chawla N, Patel BV, Kopman M, Chawla KK, Saha R, Patterson BR, Fuller ER, Langer SA. Microstructure-based simulation of thermomechanical behavior of composite materials by object-oriented finite element analysis. Mater Characteriz 2003; 49: 395–407.

[211]   Cannillo V, Pellacani GC, Leonelli C, Boccaccini AR. Numerical modeling of the fracture behavior of a glass matrix composite reinforced with alumina platelets. Composites Part A 2003;34:43–51.

[212]   Cannillo V, Leonelli C, Manfredini T, Montorsi M, Boccaccini AR. Computational simulations for the assessment of the mechanical properties of glass with controlled porosity. J Porous Mater 2003;10:189–200.

[213]   Wang Z, Kulkarni A, Deshpande S, Nakamura T, Herman H. Effects of pores and interfaces on effective properties of plasma sprayed zirconia coatings. Acta Mater 2003; 51: 5319-34.

[214]   Zimmermann MH, Baskin DM, Faber KT, Fuller Jr ER, Allen AJ, Keane DT. Fracture of a textured anisotropic ceramic. Acta Mater 2001;49:3231–42.

[215]   Zimmermann A, Carter WC, Fuller ER. Damage evolution during microcracking of brittle solids. Acta Mater 2001;49:127–37.

[216]   Saigal A, Fuller Jr ER, Langer SA, Carter WC, Zimmermann MH, Faber KT. Effect of interface properties on microcracking of iron titanate. Scripta Mater 1998;38:1449–53.

[217]   Avella M, Bondioli F, Cannillo V, Errico ME, Ferrari AM, Focher B, Malinconico M, Manfredini T, Montorsi M. Preparation, characterization and computational study of poly (ε-caprolactone) based nanocomposites. Mater Sci Technol 2004;20:1340–4.

[218]   Iwahori Y, Ishiwata S, Sumizawa T, Ishikawa T. Mechanical properties improvements in two-phase and three-phase composites using carbon nanofiber dispersed resin. Compos Part A 2005; 36: 1430.

[219]   Wang H, Bai Y, Liu S, Wu J, Wong CP. Combined effects of silica filler and its interface in epoxy resin. Acta Mater 2002; 50: 4369-77.

[220]   Lan T, Pinnavaia TJ. Clay-reinforced nanocomposites. Chem Mater 1994; 6: 2216-9.

[221]   Subramaniyan AK, Sun CT. Enhancing compressive strength of unidirectional polymeric composites using nanoclay. Compos Part A 2006; 37: 2257.

[222]   Wetzel B, Haupert F, Zhang MQ. Epoxy nanocomposites with high mechanical and tribological performance. Comps Sci Technol 2003; 63: 2055-67.

[223]   Ou Y, Yang F, Yu ZZ. A new conception on the toughness of nylon 6/silica nanocomposite prepared via in situ polymerization. J Polym Sci B 1998; 36: 789-95.

[224]   Cho J, Joshi MS, Sun CT. Effect of inclusion size on mechanical properties of polymeric composites with micro and nanoparticles. Compos Sci Technol 2006; 66: 1941-52.

[225]   Chisolm N, Mahfuz H, Rangari VK, Adnan A, Jeelani S. Fabrication and mechanical characterization of carbon/SiC-epoxy nanocomposites. Compos Struct 2005; 67: 115-24.

[226]   Voros G, Pukanszky B. Prediction of the yield stress of composites containing particles with an interlayer of changing properties. Composites A 2002; 33: 1317-22.

[227]   Reynaud E, Jouen T, Gauthier C, Vigier G, Varlet J. Nanofillers in polymeric matrix: a study on silica reinforced PA6. Polymer 2001; 42: 8759-68.

[228]   Kontou E, Anthoulis G. The effect of silica nanoparticles on the thermomechanical properties of polystyrene. J Appl Polym Sci 2007; 105: 1723-31.

[229]   Saber-Samandari S, Khatibi AA. The effect of interphase on the elastic modulus of polymer based nanocomposites. In: Liu HY, Hu XZ, Hoffman M, editors. Fracture of materials: moving forwards. Switzerland: Tans Tech Publications; 2006. pp. 199–204.

[230]   Carrado KA, Xu L. In situ synthesis of polymer-clay nanocomposites from silicate gels. Chem Mater 1998; 10: 1440-5.

[231]   Schiotz J, Jacobsen KW. A maximum in the strength of nanocrystalline copper. Science 2003; 301: 1357-59.

[232]   Chen Q, Chasiotis I, Chen C, Roy A. Nanoscale and effective mechanical behavior and fracture of silica nanocomposites. Compos Sci Technol 2008; 68: 3137-44.

[233]   Adachi T, Osaki M, Araki W, Kwon S. Fracture toughness of nano- and micro-spherical silica-particle-filled epoxy composites. Acta Mater 2008; 56: 2101-9.

[234]   Zhang H, Zhang Z, Friedrich K, Eger C. Property improvements of in situ epoxy nanocomposites with reduced interparticle distance at high nanosilica content. Acta Mater 2006: 54: 1833.

[235]   Ragosta G, Abbate M, Musto P, Scarinzi G, Mascia L. Epoxy-silica particulate nanocomposites: chemical interactions, reinforcement and fracture toughness. Polymer 2005; 46: 10506.

[236]   Choi S, Awaji H. Nanocomposites-a new material design concept. Sci Technol Adv Mater 2005; 6: 2-10.

[237]   Lee J, Yee AF. Fracture of glass bead/epoxy composites: on micro-mechanical deformations. Polymer 2000; 41: 8363.

[238]   Gao L, Wang HZ, Hong JS, Miyamoto H, Miyamoto K, Nishikawa Y, de la Torre D. Mechanical properties and microstructures of nano-SiC-Ai2O3 composites densified by spark plasma sintering. J Eur Ceram Soc 1999; 19: 609-13.

[239]   Davidge RW, Brook RJ, Cambier F, Poorteman M, Leriche A, O’sullivan D, Hampshire S, Kennedy T. Fabrication, properties, and modeling of engineering ceramics reinforced with nanoparticles of silicon carbide. Br Ceram Trans 1997; 96: 121-7.

[240]   Carroll L, Sternitzke M, Derby B. Silicon Carbide particle size effects in alumina-based nanocomposites. Acta Mater 1996; 44: 4543-52.

[241]   Zhao J, Steans LC, Harmer MP, Chan HM, Miller GA, Cook RF. Mechanical behavior of alumina-silicon carbide nanocomposites. J Am Ceram Soc 1993; 76: 503-10.

[242]   Niihara K. New design concept of structural ceramics-ceramic nanocomposites. J Ceram Soc Japan 1991; 99: 974-82.

[243]   Awaji H, Choi SM. Review: ceramic-based nanocomposites. In: SG Pandalai (Ed.), Recent Research Developments in Materials Science & Engineering 2002; 1: 585-597.

[244]   Awaji H, Choi SM, Yagi E. Mechanisms of toughening and strengthening in ceramicbased nanocomposites. Mech Mater 2002; 34: 411-22.

[245]   Xiao SP, Belytschko T. A bridge domain method for coupling continua with molecular dynamics. Comput Methods Appl Mech Eng 2004; 193: 1645-69.

 
 
Top