JBNB  Vol.3 No.3 , July 2012
Preparation of Ionic Liquid Functionalized Silica Nanoparticles for Oral Drug Delivery
The objective of this study is to utilize the pH sensitivity of modified silica nanoparticles (SNIL) by imidazole-based ionic liquid for oral delivery of insulin. In the first time, the imidazole was covalently attached to the 3-trimethoxysily-lpropyl chloride with replacement of all the chlorine atoms. Then, a silica nanoparticle was modified by N-(3-trimeth-oxysilylpropyl) imidazole. The nanocapsule (NCIL) was achieved after the etching of the modified silica nanoparticle template with hydrofluoric acid. The nanoparticles connected through an ionic liquid-like network were characterized by FTIR and SEM. Insulin was entrapped in these carriers and the in vitro release profiles were established separately in both enzyme-free simulated gastric and intestinal fluids (SGF, pH 1) and (SIF, pH 7.4), respectively. When these drug-loaded nanoparticles was placed in physiological buffer solution (pH 7.4), a partial negative surface charge on the modified silica nanoparticle was generated due to the deprotonation of silanol groups, and the strong electrostatic repulsion triggered a sustained release of the loaded molecules.

Cite this paper
M. Mahkam, F. Hosseinzadeh and M. Galehassadi, "Preparation of Ionic Liquid Functionalized Silica Nanoparticles for Oral Drug Delivery," Journal of Biomaterials and Nanobiotechnology, Vol. 3 No. 3, 2012, pp. 391-395. doi: 10.4236/jbnb.2012.33038.
[1]   V. H. L. Lee and A. Yamamoto, “Penetration and Enzymatic Barriers to Peptide and Protein Absorption,” Advanced Drug Delivery Reviews, Vol. 4, No. 2, 1990, pp. 171-207. doi:10.1016/0169-409X(89)90018-5

[2]   J. F. Woodley, “Enzymatic Barriers for GI Peptide and Protein Delivery,” Critical Reviews in Therapeutic Drug Carrier Systems, Vol. 11, 1994, pp. 61-95.

[3]   J. S. Beck, M. E. Leonowicz and W. J. Roth, “Ordered Mesoporous Mole-cular-Sieves Synthesized by a Liquid- Crystal Template Mechanism,” Nature, Vol. 359, 1992, pp. 710-712. doi:10.1038/359710a0

[4]   D. E. De Vos, M. Dams and B. F. Sels, “Dielectric Properties of BNT Ferroelectrics in Paraelectric Phase,” Chemical Reviews, Vol. 102, 2002, pp. 3615-3640. doi:10.1021/cr010368u

[5]   A. Vinu, M. Miyahara and K. Z. Hossain, “Lysozyme Adsorption onto Mesoporous Materials: Effect of Pore Geometry and Stability of Ad-sorbents,” Journal of Nanoscience and Nanotechnology, Vol. 7, No. 3, 2007, pp. 828-832. doi:10.1166/jnn.2007.511

[6]   J. Salonen, L. Laitinen and A. M. Kaukonen, “Mesoporous Silicon Microparticles for Oral Drug Delivery: Loading and Release of Five Model Drugs,” Journal of Controlled Release, Vol. 108, No. 2-3, 2005, pp. 362-374. doi:10.1016/j.jconrel.2005.08.017

[7]   I. I. Slowing, B. G. Trewyn and S. Giri, “Mesoporous Silica Nanoparticles for Drug Delivery and Biosensing Applications,” Advanced Functional Materials, Vol. 17, No. 8, 2007, pp. 1225-1236. doi:10.1002/adfm.200601191

[8]   J. Lu, M. Liong and J. I. Zink, “Mesoporous Silica Nanoparticles as a Delivery System for Hydrophobic Anticancer Drugs,” Small, Vol. 3, No. 8, 2007, pp. 1341- 1346. doi:10.1002/smll.200700005

[9]   J. Gu, W. Fan and A. Shimojima, “Organic-Inorganic Mesoporous Nanocarriers, Integrated with Biogenic Li-gands,” Small, Vol. 3, No. 10, 2007, pp. 1740-1744. doi:10.1002/smll.200700311

[10]   A. Vinu, K. Z. Hossain and K. Ariga, “Recent Advances in Functionalization of Mesoporous Silica,” Journal of Nanoscience and Nanotechnology, Vol. 5, No. 3, 2005, pp. 347-371. doi:10.1166/jnn.2005.089

[11]   F. Y. Qu, G. S. Zhu and S. Y. Huang, “Effective Controlled Release of Captopril by Silylation of Mesoporous MCM-41,” Physical Chemistry Chemical Physics, Vol. 7, No. 2, 2006, pp. 400-406. doi:10.1002/cphc.200500294

[12]   P. Horcajada, A. Ra-mila and J. Perez-Pariente, “Influence of Pore Size of MCM-41 Matrices on Drug Delivery Rate,” Microporous and Mesoporous Mater, Vol. 68, No. 1-3, 2004, pp. 105-109. doi:10.1016/j.micromeso.2003.12.012

[13]   Y. J. Han, G. D. Stucky and A. Butler, “Mesoporous Silicate Seques-tration and Release of Proteins,” Journal of the American Chemical Society, Vol. 121, No. 42, 1999, pp. 9897-9898. doi:10.1021/ja992138r

[14]   Y. F. Zhu, J. L. Shi and Y. S. Li, “Storage and Release of Ibuprofen Drug Molecules in Hollow Mesoporous Silica Spheres with Modified Pore Surface,” Microporous and Mesoporous Mater, Vol. 85, No. 1-2, 2005, pp. 75-81. doi:10.1016/j.micromeso.2005.06.015

[15]   D. R. Radu, C.Y. Lai and K. Jeftinija, “A Polyamidoamine Dendri-mer-Capped Mesoporous Silica Nanosphere-Based Gene Transfection Reagent,” Journal of the American Chemical Society, Vol. 126, No. 41, 2004, pp. 13216-13217. doi:10.1021/ja046275m

[16]   S. Giri, B. G. Trewyn and M. P. Stellmaker, “Stimuli- Responsive Controlled-Release Delivery System Based on Mesoporous Silica Nanorods Capped with Magnetic Nanoparticles,” Angewandte Chemie International Edition, Vol. 44, 2005, pp. 5038-5044. doi:10.1002/anie.200501819

[17]   F. S. Xiao, S. H. Wang and P. W. Fan, “pH-Responsive Carrier System Based on Carboxylic Acid Modified Mesoporous Silica and Polye-lectrolyte for Drug Delivery,” Chemistry of Materials, Vol. 17, No. 24, 2005, pp. 5999-6003. doi:10.1021/cm051198v