JBNB  Vol.3 No.3 , July 2012
Investigation of the Effect of Local Electrical Stimulation on Cells Cultured on Conductive Single-Walled Carbon Nanotube/Albumin Films
Abstract: In this study we have developed a biocompatible current-conductive coating based on carbon nanotubes and bovine serum albumin and have shown its efficiency in culturing cells in vitro. We investigate the proliferation of human embryonic fibroblast (HEF) cells, which were subjected to electrical stimulation when cultured on carbon nanotube surface. A weak increase in proliferation is demonstrated at stimulating field pulses up to 100 mV. It is assumed that the transport mechanism accompanied by higher synthesis of proteins and their polymerization may increase proliferative activity at low voltages. At higher voltages the motility and spatial organization of HEF cell is observed. As a result, a novel technique of supplying the cells with electric field through a system of micro- and nanosized electrodes and a biocompatible composite have been developed.
Cite this paper: I. I. Bobrinetskiy, A. S. Seleznev, R. A. Morozov, O. A. Lopatina, R. Y. Podchernyaeva and I. A. Suetina, "Investigation of the Effect of Local Electrical Stimulation on Cells Cultured on Conductive Single-Walled Carbon Nanotube/Albumin Films," Journal of Biomaterials and Nanobiotechnology, Vol. 3 No. 3, 2012, pp. 377-384. doi: 10.4236/jbnb.2012.33036.

[1]   N. A. Charoo, Z. Rahman, M. A. Repka and S. N. Murthy, “Electroporation: An Avenue for Transdermal Drug De-livery,” Current Drug Delivery, Vol. 7, No. 2, 2010, pp. 125-136. doi:10.2174/156720110791011765

[2]   M. P. Prabhakaran, L. Ghasemi-Mobarakeh, M. Morshed, M. H. Nasr-Esfahani, H. Baharvand, et al., “Application of Conductive Polymers, Scaffolds and Electrical Stimulation for Nerve Tissue Engineering,” Journal of Tissue Engineering and Regenerative Medicine, Vol. 5, No. 4, 2011, pp. 17-35. doi:10.1002/term.383

[3]   P. X. Ma, “Biomimetic Materials for Tissue Engineering,” Advanced Drug Delivery Reviews, Vol. 60, No. 2, 2008, pp. 184-198. doi:10.1016/j.addr.2007.08.041

[4]   B. S. Harrison and A. Atala, “Carbon Nanotube Applications for Tissue Engineering,” Biomaterials, Vol. 28, No. 2, 2007, рр. 344-353. doi:10.1016/j.biomaterials.2006.07.044

[5]   T. Dvir, B. P. Timko, D. S. Kohane and R. Langer, “Nanotechnological Strategies for Engineering Complex Tissues,” Nature Nanotechnology, Vol. 6, 2010, pp. 13- 22. doi:10.1038/nnano.2010.246

[6]   M. A. Correa-Duarte, N. Wagner, J. Rojas-Chapana, C. Morsczeck, M. Thie, et al., “Fabrication and Biocompatibility of Carbon Nano-tube-Based 3D Networks as Scaffolds for Cell Seeding and Growth,” Nano Letters, Vol. 4, No. 11, 2004, pp. 2233-2236. doi:10.1021/nl048574f

[7]   L. P. Zanello, B. Zhao, H. Hu and R. C. Haddon, “Bone Cell Proliferation on Carbon Nanotubes,” Nano Letters, Vol. 6, No. 2, 2006, pp. 562-567. doi:10.1021/nl051861e

[8]   S. A. Ageeva, I. I. Bobrinetskii, V. K. Nevolin, V. M. Podgaetskii, S. V. Selishchev, et al., “Nanotube-Based Three-Dimensional Albumin Composite Obtained Using Continuous Laser Radiation,” Semiconductors, Vol. 43, No. 13, 2009, pp. 3-11. doi:10.1134/S1063782609130211

[9]   F. L. Y. Yuen, G. Zak, S. D. Waldman and A. Docoslis, “Morphology of Fibroblasts Grown on Substrates Formed by Dielectrophoretically Aligned Carbon Nanotubes,” Cyto-technology, Vol. 56, No. 1, 2008, pp. 9-17. doi:10.1007/s10616-007-9113-0

[10]   P. R. Supronowicz, P. M. Ajayan, K. R. Ullmann, B. P. Arulanandam, D. W. Metzger, et al., “Novel Current-Conducting Composite Substrates for Exposing Osteoblasts to Alternating Current Stimulation,” Journal of Biomedical Materials Research, Vol. 59, No. 3, 2002, pp. 499-506. doi:10.1002/jbm.10015

[11]   M. K. Gheith, T. C. Pappas, A.V. Liopo, V. A. Sinani, B. S. Shim, et al., “Stimulation of Neural Cells by Lateral Currents in Conductive Layer-by-Layer Films of Single-Walled Carbon Nano-tubes,” Advanced Materials, Vol. 18, 2006, pp. 2975-2979. doi:10.1002/adma.200600878

[12]   N. W. S. Kam, E. Jan and N. A. Kotov, “Electrical Stimulation of Neural Stem Cells Mediated by Humanized Carbon Nanotube Composite Made with Extracellular Matrix Protein,” Nano Letters, Vol. 9, No. 1, 2009, pp. 273-278. doi:10.1021/nl802859a

[13]   I. I. Bobrinetskii, “Methods of Parallel Integration of Carbon Nanotubes during the Formation of Functional Devices for Microelectronics and Sensor Technologies,” Russian Microelectronics, Vol. 38, No. 5, 2009, pp. 320- 326. doi:10.1134/S1063739709050047

[14]   I. I. Bobrinetskii, R. A. Morozov, V. M. Podgaetskii, M. M. Simunin and I. V. Yaminskii, “A Study of Bulky Nanotube Composites Based on Albumin by High-Resolution Microscopy,” Biophysics, Vol. 56, No. 2, 2011, pp. 194-199. doi:10.1134/S0006350911020060

[15]   V. M. Podgaetsky, S. V. Selishchev, I. I. Bobrinetskii and V. K. Nevolin, “Volumetric Nanodesign by New Laser Method. Application for Medical Purposes,” Optical Memory & Neural Networks, Vol. 17, 2008, pp. 147-151.

[16]   J. A. Genovese, C. Spadaccio, J. Langer, J. Habe, J. Jackson, et al., “Electrostimulation Induces Cardiomyocyte Predif-ferentiation of Fibroblasts,” Biochemical and Biophysical Research Communications, Vol. 370, No. 3, 2008, pp. 450-455. doi:10.1016/j.bbrc.2008.03.115

[17]   D. Elgrabli, S. Abella-Gallart, O. Aguerre-Chariol, F. Ro- bidel, F. Rogerieux, et al., “Effect of BSA on Carbon Nanotube Dispersion for in Vivo and in Vitro Studies,” Nanotoxicology, Vol. 1, 2007, pp. 266-278. doi:10.1080/17435390701775136

[18]   J. W. Shen, T. Wu, Q. Wang and Y. Kang, “Induced Stepwise Conformational Change of Human Serum Albumin on Carbon Nanotube Surfaces,” Biomaterials, Vol. 29, No. 28, 2008, pp. 3847-2855. doi:10.1016/j.biomaterials.2008.06.013

[19]   P. Asuri, S. S. Karajanagi, H. Yang, T. J. Yim, R. S. Kane, et al., “Increasing Protein Stability through Control of the Nanoscale Environment,” Langmuir, Vol. 22, No. 13, 2006, pp. 5833-5836. doi:10.1021/la0528450

[20]   J. M. W?rle-Knirsch., K. Pulskamp and H. F. Krug, “Oops They Did It Again! Carbon Nanotubes Hoax Scientists in Viability Assays,” Nano Letters, Vol. 6, No. 6, 2006, pp. 1261-1268. doi:10.1021/nl060177c

[21]   L. Belyanskaya, P. Manser, P. Spohn and A. Bruinink, P. Wick, “The Reliability and Limits of the MTT Reduction Assay for Carbon Nanotubes-Cell Interaction,” Carbon, Vol. 45, No. 13, 2007, pp. 2643-2648. doi:10.1016/j.carbon.2007.08.010

[22]   J. Schimmelpfeng and H. Dertinger, “The Action of 50 Hz Magnetic and Electric Fields Upon Cell Proliferation and Cyclic AMP Content of Cultured Mammalian Cells,” Bioelectrochemistry and Bioenergetics, Vol. 30, 1993, pp. 143-150. doi:10.1016/0302-4598(93)80072-3

[23]   B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, et al., “Molecular Biology of the Cell,” 4th edition, Garland Science, New York, 2002.

[24]   A. K. Dubey, S. D. Gupta and B Basu, “Optimization of Electrical Stimulation Parameters for Enhanced Cell Proliferation on Biomaterial Surfaces,” Journal of Biomedical Materials Research Part B, Vol. 98, Vol. 2011, pp. 18-29.

[25]   J. F. Kolb, S. Kono and K. H. Schoenbach, “Nanosecond Pulsed Electric Field Generators for the Study of Subcellular Effects,” Bioelec-tromagnetics, Vol. 27, No. 3, 2006, pp. 172-187. doi:10.1002/bem.20185

[26]   L. M. Sheng, M. Liu, P. Liu, Y. Wei, L. Liu and S. S. Fan, “Field Emission from Self-Assembly Structure of Carbon-Nanotube Films,” Applied Surface Science, Vol. 250, No. 1-4, 2005, pp. 9-13. doi:10.1016/j.apsusc.2004.12.036