[1] Gu, Y.W., Khor, K.A. and Cheang, P. (2004) Bone-like apatite layer formation on hydroxyapatite prepared by spark plasma sintering (SPS). Biomaterials, 25, 4127–4134. doi: 10.1016/j.biomaterials.2003.11.030
[2] Ni, J. and Wang, M. (2002) In vitro evaluation of hydroxyapatite reinforced polyhydroxybutyrate composite. MaterSciEng C, 20, 101–109. doi: 10.1016/S0928-4931(02)00019-X
[3] Sa′nchez-Salcedo, S., Balas, F., Izquierdo-Barba, I. and Vallet-Regi, M. (2009) In vitro structural changes in porous HA/b-TCP scaffolds in simulated body fluid. Acta Biomaterialia, 5, 2738–2751. doi:10.1016/j.actbio.2009.03.025
[4] Pecheva, E.V., Pramatarova, L.D., Maitz, M.F., Pham, M.T. and Kondyuirin, A.V. (2004) Kinetics of hydroxyapatite deposition on solid substrates modified by sequential implantation of Ca and P ions Part II: Morphological, composition and structure study. Applied Surface Science, 235, 170–175. doi:10.1016/j.apsusc.2004.05.178
[5] Chavan, P.N., Bahir, M.M., Mene, R.U., Mahabole, M.P. and Khairnar, R.S. (2010) Study of nanobiomaterial hydroxyapatite in simulated body fluid: formation and growth of apatite. Materials Science and Engineering B, 168, 224–230. doi:10.1016/j.mseb.2009.11.012
[6] Arnich, N., Marie-Claire, L., Laurensot, F., Podor, R. and Montiel, A. (2003) Burnel D. In vitro and in vivo studies of lead immobilization by synthetic hydroxyapatite. Environmental Pollution, 124, 139–149. doi:10.1016/S0269-7491(02)00416-5
[7] Wong, C.T., Lu, W.W., Chan, W.K., Cheung, K.M.C., Luk, K.D.K., Lu, D.S., Rabie, A.B.M., Deng, L.F. and Leong, J.C.Y. (2004) In vivo cancellous bone remodeling on a strontium containing hydroxyapatite (Sr-HA) bioactive cement. JbiomedMatRes A, 68, 513–521. doi:10.1002/jbm.a.20089
[8] Labella, R., Braden, M. and Debt, S. (1994) Novel hydroxyapatite-based dental composites. Biomaterials, 15, 1197-1200. doi: 10.1016/0142-9612(94)90269-0
[9] Werber, R., Klaus-Dieter, Brauer, R.B., Wei?, W. and Becker, K. (2000) Osseous integration of bovine hydroxyapatite ceramic in metaphyseal bone defects of the distal. The Journal of Hand Surgery, 25A, 833-841. doi:org/10.1053/jhsu.2000.16354
[10] Mahabole, M.P., Aiyer, R.C., Ramakrishna, C.V., Sreedhar, B. and Khairnar, R.S. (2005) Synthesis, characterization and gas sensing property of hydroxyapatite ceramic. Bulletin of Materials Science, 28, 535-545. doi:10.1007/BF02706339
[11] Mene, R.U., Mahabole, M.P., Aiyer, R.C. and Khairnar, R.S. (2010) Hydroxyapatite Nano-ceramic thick Film: An efficient CO2 Gas Sensor. The open Applied Physics Journal, 3, 10-16. doi:10.2174/1874183501003010010
[12] Mene, R.U., Mahabole, M.P. and Khairnar, R.S. (2011) Surface Modified Hydroxyapatite Thick Films for CO2 Gas Sensing Application: Effect of Swift Heavy Ion Irradiation. Radiation Physics and Chemistry, 80, 682–687. http://dx.doi.org/10.1016/j.radphyschem.2011.02.002
[13] Furuta, S., Katsuki, H. and Komarneni, S. (2000) Removal of lead ions using porous hydroxyapatite monoliths synthesized from gypsum waste. Journal of Ceramic Society of Japan, 108, 315-317. doi:10.2109/jcersj.108.1255_315
[14] Aizawa, M., Howell, S., Itatani, K., Yokogawa, Y., Nishizawa, K., Toriyama, M. and Kameyama, T. (2000) Fabrication of porous ceramics with well-controlled open pores by sintering of fibrous hydroxyapatite particles. Journal of Ceramic Society of Japan, 108, 249-253. doi:10.2109/jcersj.108.1255_249
[15] Sugiyama, S., Nakanishi, T., Ishimura, T., Moriga, T., Hayashi, H., Shigomoto, N. and Moffat, J.B. (1999) Preparation characterization and thermal stability of lead hydroxyapatite. Journal of Solid State Chemistry, 143, 296-302. doi:10.1006/jssc.1998.8126
[16] Schroder, E., Jonsson, T. and Poole L. (2003) Hydroxyapatite chromatography: altering the phosphate-dependent elution profile of protein as a function of pH. Analytical Biochemistry, 313, 176–178. doi:10.1016/S0003-2697(02)00567-5
[17] Park, Y.S. and Yamazaki, Y. (2005) Novel Nafion/Hydroxyapatite composite membrane with high crystallinity and low methanol crossover for DMFCs. Polymer Bulletin, 53, 181–192. doi:10.1007/s00289-004-0310-0
[18] Quilitz, M., Steingro¨ver, K. and Veith, M. (2010) Effect of the Ca/P ratio on the dielectric properties of nanoscaled sub stoichiometric hydroxyapatite. J Mater Sci: Mater Med, 21, 399–405. doi:10.1007/s10856-009-3875-1
[19] Shi, S.L., Pan, W., Han, R.B. and Wan, C.L. (2006) Electrical and dielectric behaviours of Ti3SiC2/hydroxyapatite composites. Applied Physics Letters, 88, 052903-1-052903-2. doi:10.1063/1.2168684
[20] Gittings, J.P., Bowen, C.R., Dent, A.C.E., Turner, I.G., Baxter, F.R. and Chaudhuri, J.B. (2009) Electrical characterization of hydroxyapatite-based bioceramics. Acta Biomaterialia, 5, 743–754. doi:10.1016/j.actbio.2008.08.012
[21] Silva, C.C., Almeida, A.F.L., De oliveira, R.S., Pinheiro, A.G., Goes, J.C. and Sombra, A.S.B. (2003) Dielectric permittivity and loss of hydroxyapatite screen-printed thick films. Journal of Materials Science, 38, 3713–3720. doi:10.1023/A:1025963728858
[22] Hoepefner, T.P. and Case, E.D. (2002) The porosity dependence of the dielectric constant for sintered hydroxyapatite. JbiomedMatRes A, 60, 643–650. doi:10.1002/jbm.10131
[23] Ikoma, T., Yamazaki, A., Nakamura, S. and Akao, M. (1999) Preparation and dielectric property of sintered monoclinic hydroxyapatite. Journal of Materials Science Letters, 18, 1225–1228. doi:10.1023/A:1006610521173
[24] Laghzizil, A., Elherch, N., Bouhaouss, A., Lorente, G., Coradin, T. and Livage, J. (2001) Electrical behavior of hydroxyapatites M10(PO4)6(OH)2 (M = Ca, Pb, Ba). Materials Research Bulletin, 36, 953–962. doi:10.1016/S0025-5408(01)00576-1
[25] Ni, G.X., Lin, J.H., Chiu, P.K.Y., Li, Z.Y. and Lu, W.W. (2010) Effect of strontium-containing hydroxyapatite bone cement on bone remodeling following hip replacement. J Mater Sci: Mater Med, 21, 377–384. doi:10.1007/s10856-009-3866-2
[26] Saint-Jean, J., Camire, C.L., Nevsten, P., Hansen, S. and Ginebra, M.P. (2005) Study of the reactivity and in vitro bioactivity of sr-substituted α-tcp cements. JMater SciMaterMed, 16, 993–1001. doi:10.1007/s10856-005-4754-z
[27] Guo, D., Xu, K., Zhao, X. and Han, Y. (2005) Development of a strontium-containing hydroxyapatite bone cement. Biomaterials, 26, 4073–4083. doi:10.1016/j.biomaterials.2004.10.032
[28] Kanno, T., Horiuchi, J.I., Koba, M., Motogami, Y. and Akazawa, T. (1999) Characteristics of the carbonate ions incorporated into calcium, partially-strontium-substituted and strontium apatites. Journal of Materials Science Letters, 18, 1343–1345. doi: 10.1023/A:1006638416515
[29] Wang, X. and Ye, J. (2008) Variation of crystal structure of hydroxyapatite in calcium phosphate cement by the substitution of strontium ions. JMaterSciMaterMed, 19, 1183–1186. doi:10.1007/s10856-007-3209-0
[30] Bera, J., Kalia, V. and Roy, P.K. (2004) Comparison of electrical properties between Ca and Sr hydroxyapatite materials. International Symposium on Advanced Materials and Processing, 6-8 December (2004), IIT Kharagpur, India, 721 302. http://hdl.handle.net/2080/227
[31] Ternane, R., Trabelsi –Ayedi, M., Kbir-Ariguib, N. and Piriou, B. (1999) Luminescent properties of Eu3+ in calcium hydroxyapatite. Journal of Luminescence, 81, 165-170. doi: 10.1016/S0022-2313(98)00172-0
[32] Chen, F., Zhu, Y.J., Zhang, K.H., Wu, J., Wang, K.W., Tang, Q.L. and Mo, X.M. (2011) Europium-doped amorphous calcium phosphate porous nanospheres: preparation and application as luminescent drug carriers. Nanoscale Research Letters, 6, 67. doi:10.1186/1556-276X-6-67
[33] Chen, F., Huang, P., Zhu, Y.J., Wu, J., Zhang, C.L. and Xiang Cui, D.X. (2011) The photoluminescence, drug delivery and imaging properties of multifunctional Eu3+/Gd3+ dual-doped hydroxyapatite nanorods. Biomaterials, 32, 9031-9039. doi:10.1016/j.biomaterials.2011.08.032
[34] Silva, C.C., Filho, F.P., Sombra, A.S.B., Rosa, I.L.V., Leite, E.R., Longa, E. and Varela, J.A. (2008) Study of structural and photoluminescence properties of Ca8Eu2(PO4)6O2. J Fluorescence, 18, 253-259. doi:10.1007/s10895-007-0242-9
[35] Graeve, O.A., Raghunath, K., Madadi, A., Brandon, C.W. and Glass, K.C. (2010) Luminescence variations in hydroxyapatites doped with Eu2+ and Eu3+ ions. Biomaterials, 31, 4259–4267. doi:10.1016/j.biomaterials.2010.02.009
[36] Zhang, C.M., Yang, J., Quan, Z.W., Yang, P.P., Li, C.X., Hou, Z.Y. and Lin J. (2009) Hydroxyapatite nano and microcrystals with multiform morphologies: controllable synthesis and luminescence properties. Crystal Growth and Design, 9, 2725-2733. doi:10.1021/cg801353n
[37] Muller, F.A., Muller, L., Zollfrank, C. and Greil, P. (2006) Inherent luminescence of annealed biomimetic apatites. Engineering Materials, 311, 655-658. doi:10.4028/www.scientific.net/KEM.309-311.655
[38] Chung, R.J., Chin, T.S., Cheng, H.Y., Wen, H.W. and Hsieh, M.F. (2007) Photo-luminescent hydroxyapatite coating through a bio-mimetic process. Biomolecular Engineering, 24(5), 459-461. doi:10.1016/j.bioeng.2007.07.006
[39] Zhang, C., Cheng, Z., Yang, P., Xu, Z., Peng, C., Li, G. and Lin J. (2009) Architectures of strontium hydroxyapatite microspheres: solvothermal Synthesis and Luminescence properties. Langmuir, 25(23), 13591–13598. doi:10.1021/la9019684
[40] Zhang, C., Li, C., Huang, S., Hou, Z., Cheng, Z., Yang, P., Peng, C. and Lin J. (2010) Self-activated luminescent and mesoporous strontium hydroxyapatite nanorods for drug delivery. Biomaterials, 31(12), 3374-3383. doi: 10.1016/j.biomaterials.2010.01.044
[41] Tas, A.C. (2000) Synthesis of biomimetic Ca-hydroxyapatite powders at 370C in synthetic body fluids. Biomaterials, 21, 1429-1438. doi: 10.1016/S0142-9612(00)00019-3
[42] Jalota, S., Bhaduri, S.B. and Tas, A.C. (2008) Using a synthetic body fluid (SBF) solution of 27 mM HCO3- to make bone substitutes more osteointegrative. Material Science and Engineering C, 28, 129-140. doi:10.1016/j.msec.2007.10.058
[43] Gittings, J.P., Bowen, C.R., Turner, I.G., Dent, A.C.E., Baxter, F.R. and Chaudhuri, J.B. (2008) Dielectric Properties of Hydroxyapatite Based Ceramics. In: Dimov S, Menz W, Ed., Multi Material Micro Manufacture, Cardiff UK, 2-5.
[44] Gittings, J.P., Bowen, C.R., Turner, I.G., Baxter, F.R. and Chaudhuri, J.B. (2007) Characterization of ferroelectric calcium phosphate composites and ceramics. European Ceramic Society, 27, 4187-4190. doi:10.1016/j.jeurceramsoc.2007.02.120
[45] Silva, C.C., Graca, M.P.F., Sombra, A.S.B. and Valente, M.A. (2009) Structural and electrical study of calcium phosphate obtained by a microwave radiation assisted procedure. Physica B: Condensed Matter, 404, 1503-1508. doi:10.1016/j.physb.2009.01.015
[46] Hyun-Min, K., Teruyuki, H., Kokubo, T. and Takashi, N. (2005) Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in a simulated body fluid. Biomaterials, 26, 4366–4373. doi:10.1016/j.biomaterials.2004.11.022