IJMNTA  Vol.1 No.2 , June 2012
Nonlinear Uncertain HIV-1 Model Controller by Using Control Lyapunov Function
ABSTRACT
In this paper, we introduce a new Control Lyapunov Function (CLF) approach for controlling the behavior of nonlinear uncertain HIV-1 models. The uncertainty is in decay parameters and also external control setting. CLF is then applied to different strategies. One such strategy considers input into infected cells population stage and the other considers input into a virus population stage. Furthermore, by adding noise to the HIV-1 model a realistic comparison between control strategies is presented to evaluate the system’s dynamics. It has been demonstrated that nonlinear control has effectiveness and robustness, in reducing virus loading to an undetectable level.

Cite this paper
F. Alazabi and M. Zohdy, "Nonlinear Uncertain HIV-1 Model Controller by Using Control Lyapunov Function," International Journal of Modern Nonlinear Theory and Application, Vol. 1 No. 2, 2012, pp. 33-39. doi: 10.4236/ijmnta.2012.12004.
References
[1]   D. M. Bortz and P. W. Nelson, “Sensitivity Analysis of a Nonlinear Lumped Parameter Model of HIV Infection Dynamics,” Bulletin of Mathematical Biology, Vol. 66, No. 5, 2004, pp. 1009-1026. doi:10.1016/j.bulm.2003.10.011

[2]   N. I. Stilianakis, K. Dietz and D. Schenzle “Analysis of a Model for the Pathogenesis of AIDS,” Mathematical Biosciences, Vol. 145, No. 1, 1997, pp. 27-46. doi:10.1016/S0025-5564(97)00018-7

[3]   A. S. Perelson and P.W. Nelson, “Mathematical Analysis of HIV-1 Dynamics in Vivo,” Society for Industrial and Applied Mathematics Review, Vol. 41, No. 1, 1999, pp. 344. doi:10.1137/S0036144598335107

[4]   M. A. Stafford, L. Corey, Y. Cao, E. S. Daar, D. D. Ho and A. S. Perelson, “Modeling Plasma Virus Concentration during Primary HIV Infection,” Journal of Theoretical Biology, Vol. 203, No. 3, 2000, pp. 285-301. doi:10.1006/jtbi.2000.1076

[5]   A. S. Perelson, A. U. Neumann, M. Markowitz, M. Markowitz, J. M. Leonard and D. D. Ho, “HIV-1 Dynamics in Vivo: Virion Clearance Rate, Infected Cell Lifespan, and Viral Generation Time,” Science, Vol. 271, No. 5255, 1996, pp. 1582-1586. doi:10.1126/science.271.5255.1582

[6]   V. Gajic, “Optimal Control of HIV-Virus Dynamics,” Annals of Biomedical Engineering, Vol. 37, No. 6, 2009, pp. 1251-1261. doi:10.1007/s10439-009-9672-7

[7]   S. Ge, Z. Tian and T. Lee, “Nonlinear Control of Dynamic Model of HIV-1,” IEEE Transaction on Biomedical Engineering, Vol. 52, No. 6, 2005, pp. 353-361. doi:10.1109/TBME.2004.840463

[8]   M. Brandt and G. Chen, “Feedback Control of a Biodynamical Model of HIV-1,” IEEE Transaction on Biomedical Engineering, Vol. 48, No. 7, 2001, pp. 754-759. doi:10.1109/10.930900

[9]   I. Craig and X. Xia, “Can HIV/AIDS Be Controlled,” IEEE Control Systems Magazine, Vol. 25, No. 1, 2005, pp. 8083. doi:10.1109/MCS.2005.1388805

[10]   E. Sontag, “Some New Directions in Control Theory Inspired by Systems Biology,” Systems Biology, Vol. 1, No. 1, 2004, pp. 9-18. doi:10.1049/sb:20045006

[11]   H. Chang and A. Astolfi, “Immune Response’s Enhancement via Controlled Drug Scheduling,” IEEE Conference on Decision and Control, New Orleans, 12-14 December 2007, pp. 3919-3924. doi:10.1109/CDC.2007.4434462

[12]   L. Praly and Y. Wang, “Stabilization in Spite of Matched Un-Modeled Dynamics and an Equivalent Definition of Input-to-State Stability,” Mathematics of Control, Signals and Systems, Vol. 9, No. 1, 1996, pp. 1-33. doi:10.1007/BF01211516

[13]   R. Sepulchre, M. Jankovic and P. Kokotovic, “Constructive Nonlinear Control,” Springer-Verlag, Berlin, 1997.

[14]   L. Faubourg and J. Pomet, “Design of Control Lyapnov Functions for ‘Jurdjevic-Quinn’ Systems,” Satbility and Stabilization of Nonlinear Systems, Vol. 246, 1999, pp. 137-150. doi:10.1007/1-84628-577-1_7

[15]   A. Bacciotti, “Local Stabilizability of Nonlinear Control Systems,” World Scientific, Singapore, 1992.

[16]   V. Jurjevic and J. Quinn, “Controllability and stability,” Journal of Differential Equations, Vol. 28, No. 3, 1978, pp. 381-389. doi:10.1016/0022-0396(78)90135-3

[17]   R. Outbib and G. Sallet, “Stabilizability of the Angular Velocity of a Rigid Body Revisited,” Systems and Control Letters, Vol. 18, No. 2, 1992, pp. 93-98. doi: 10.1016/0167-6911(92)90013-I

[18]   A. Knorr and R. Srivastava, “Evaluation of HIV-1 Kinetic Models using Quantitative Discrimination Analysis,” Bioinformatics, Vol. 21, No. 8, 2004, pp. 1668-1677. doi:10.1093/bioinformatics/bti230

[19]   V. Yadav and S. N. Balakrishnan, “Optimal Impulse Control of Systems with Control Constraints and Application to HIV Treatment,” Proceedings of the 2006 American Control Conference, Minneapolis, 14-16 June 2006, pp. 4824-4829. doi.org/10.1109/ACC.2006.1657484

[20]   R. Zurakowski and A. R. Teel, “Enhancing Immune Response to HIV Infection using MPC-based Treatment Scheduling,” Proceedings of the 2003 American Control Conference, Denver, 4-6 June 2003, pp. 1182-1187. doi:10.1109/ACC.2003.1239748

[21]   A. Korobeinikov, “Global Properties of Basic Virus Dynamics Models,” Bulletin of Mathematical Biology, Vol. 66, No. 4, 2004, pp. 879-883. doi:10.1016/j.bulm.2004.02.001

 
 
Top