Hopf Bifurcations in a Predator-Prey System of Population Allelopathy with Discrete Delay

Show more

References

[1] A. J. Lotka, “Elements of Physical Biology,” Williams and Wilkins, New York, 1925.

[2] V. Volterra, “Variazionie Fluttuazioni del Numero d’Individui in Specie Animali Conviventi,” Mem. Acad. Licei, Vol. 2, 1926, pp. 31-113.

[3] M. Brelot, “Sur le probleme biologique hereditaire de deux especes devorante et devore,” Annali di Matematica Pura ed Applicata, Vol. 9, No. 1, 1931, pp. 58-74.
doi:10.1007/BF02414092

[4] L. Chen, “Mathematical Models and Methods in Ecology,” Science Press, Beijing, 1988.

[5] Y. Song and S. Yuan, “Bifurcation Analysis in a Predator-Prey System with Delay,” Nonlinear Analysis: Real World Applications, Vol. 7, 2006, pp. 265-284.
doi:10.1016/j.nonrwa.2005.03.002

[6] T. Faria, “Stability and Bifurcation for a Delayed Predator-Prey Model and the Effect of Diffusion,” Journal of Mathematical Analysis and Applications, Vol. 254, No. 2, 2001, pp. 433-463.

[7] S. Ruan, “Absolute Stability, Conditional Stability and Bifurcation in Kolmogorov-Type Predator-Prey System with Discrete Delays,” Quarterly of Applied Mathematics, Vol. 59, 2001, pp. 159-172.

[8] X. P. Yan and Y. D. Chu, “Stability and Bifurcation Analysis for a Delayed Lotka-Volterra Predator-Prey System,” Journal of Computational and Applied Mathematics, Vol. 196, No. 1, 2006, pp. 198-210.

[9] X. P. Yan and C. H. Zhang, “Hopf Bifurcation in a Delayed Lokta-Volterra Predator-Prey System,” Nonlinear Analysis, Vol. RWA 9, 2008, pp. 114-127.
doi:10.1016/j.nonrwa.2006.09.007

[10] Y. Song and J. Wei, “Local Hopf Bifurcation and Global Periodic Solutions in a Delayed Predator-Prey System,” Journal of Mathematical Analysis and Applications, Vol. 301, 2005, pp. 1-21. doi:10.1016/j.jmaa.2004.06.056

[11] X. P. Yan and W. T. Li, “Hopf Bifurcation and Global Periodic Solutions in a Delayed Predatorprey System,” Applied Mathematics and Computation, Vol. 177, No. 1, 2006, pp. 427-445.

[12] J. Zhang and B. Feng, “Geometric Theory and Bifurcation Problems of Ordinary Differential Equations,” Beijing University Press, Beijing, 2000.

[13] S. A. Gourley, “Travelling Fronts in the Diffusive Nicholsons Blowflies Equation with Distributed Delays,” Mathematical and Computer Modelling, Vol. 32, 2000, pp. 843-853. doi:10.1016/S0895-7177(00)00175-8

[14] J. K. Hale, “Theory of Functional Differential Equations,” Spring-Verlag, New York, 1977.
doi:10.1007/978-1-4612-9892-2

[15] J. Wu, “Theory and Applications of Partial Functional Differential Equations,” Springer-Verlag, New York, 1996. doi:10.1007/978-1-4612-4050-1

[16] C. H. Zhang, X. P. Yan and G. H. Cui, “Hopf Bifurcations in a Predator-Prey System with a Discrete Delay and a Distributed Delay,” Nonlinear Analysis, Vol. RWA 11, 2010, pp. 4141-4153. doi:10.1016/j.nonrwa.2010.05.001

[17] X. Z. He, “Stability and Delays in a Predator-Prey System,” Journal of Mathematical Analysis and Applications, Vol. 198, No. 2, 1996, pp. 355-370.

[18] Z. Lu and W. Wang, “Global Stability for Two-Species Lotka-Volterra Systems with Delay,” Journal of Mathematical Analysis and Applications, Vol. 208, No. 1, 1997, pp. 277-280.

[19] E. L. Rice, “Allelopathy,” 2nd Edition, Academic Press, New York, 1984.

[20] J. M. Smith, “Models in Ecology,” Cambridge University, Cambridge, 1974.

[21] J. Chattopadhyay, “Effects of toxic Substance on a Two-Species Competitive System,” Ecological Modelling, Vol. 84, 1996, pp. 287-289.
doi:10.1016/0304-3800(94)00134-0

[22] A. Mukhopadhyay, J. Chattopadhyay and P. K. Tapaswi, “A Delay Differential Equations Model of Plankton Allelopathy,” Mathematical Biosciences, Vol. 149, No. 2, 1998, pp. 167-189.

[23] B. D. Hassard, N. D. Kazarinoff and Y. H. Wan, “Theory and Applications of Hopf Bifurcation,” Cambridge University Press, Cambridge, 1981.

[24] Y. Song, M. Han and J. Wei, “Stability and Hopf Bifurcation on a Simplified BAM Neural Network with Delays,” Physica D, Vol. 200, 2005, pp. 185-204.
doi:10.1016/j.physd.2004.10.010