Electromagnetic Gauges and Maxwell Lagrangians Applied to the Determination of Curvature in the Space-Time and their Applications

Francisco Bulnes^{*}

Show more

References

[1] F. Bulnes, “Design of Measurement and Detection Devices of Curvature through of the Synergic Integral Operators of the Mechanics on Light Waves,” International Mechanical Engineering Congress and Exposition, Lake Buena Vista, 13-19 November 2009, pp. 91-102.
doi:10.1115/IMECE2009-10038

[2] F. Bulnes, “Analytic Dissertations of the Sidereal Hyperspace,” Masterful Conference in UTM, Insurgents University, Mexico City, 1996, pp. 23-98.

[3] F. Bulnes, “Radon Transform and the Curvature of One Universe,” Master’s Thesis, National Autonomous University of Mexico, Mexico City, 2001.

[4] F. Bulnes, “Cohomology of Moduli Spaces in Differential Operators Classification to the Field Theory,” Proceedings of the 8th International Conference on Function Spaces, Differential Operators and Nonlinear Analysis, Tabarz, Thür, 18-24 September 2011, pp. 81101-81119.

[5] F. Bulnes, “Doctoral Course of Mathematical Electrodynamics,” Internal. Proc. Appliedmath, Vol. 2, 2006, pp. 398-447.

[6] S. Kobayashi and K. Nomizu, “Foundations of Differential Geometry, Vol. 1,” John Wiley and Sons, New York, 1963.

[7] S. Kobayashi, K. Nomizu, “Foundations of Differential Geometry, Vol. 2,” Wiley and Sons, New York, 1969.

[8] L. K. Landau, E. Lifschitz, “The Classical Theory of Fields,” Addison-Wesley, Cambridge, 1951

[9] L. J. Mason, “A Hamiltonian Interpretation of Penrose’s Quasi-Local Mass,” Classical and Quantum Gravity, Vol. 6, No. 2, L-7-L13, 1989. doi:10.1088/0264-9381/6/2/001

[10] L. J. Mason and J. Frauendiener, “Sparling 3-Form, Ashtekar Variables and Quasi-Local Mass,” Twistor, Twistor in Mathematics and Physics, Cambrindge, 1990.

[11] R. Penrose, “Quasilocal Mass and Angular Momentum in General Relativity,” Proceedings of the Royal Society A, Vol. 381, No. 1780, 1982, pp. 53-63.
doi:10.1098/rspa.1982.0058

[12] G. Giachetta and G. Sardanashvily, “Stress-Energy-Momentum Tensors in Lagrangian Field Theory. Part 2. Gravitational Superpotential,” 1995.
http://arxiv.org/abs/gr-qc/9511040v1

[13] H. Friedrich, “Gravitational Fields Near Space-Like and Null Infinity”, Journal of Geometry and Physics, Vol. 24, No. 2, 1998, pp. 83-163.
doi:10.1016/S0393-0440(97)82168-7

[14] J. D. E. Creighton and R. Mann, “Quasilocal Thermodynamics of Dilaton Gravity Coupled to Gauge Fields,” Physical Review D, Vol. 52, No. 8, 1995, pp. 4569-4587.
doi:10.1103/PhysRevD.52.4569

[15] J. Król, “Quantum Gravity Insights from Smooth 4-Geometries on Trivial R4,” Quantum Gravity, 2012. pp. 5378.

[16] J. Krol, “(Quantum) Gravity Effects via Exotic R4,” Annalen der Physik, Vol. 19, No. 3-5, 2010, pp. 355-358.
doi:10.1002/andp.201010446

[17] N. Prezas and K. Sfetsos, “Supersymmetric Moduli of the SU(2) × Rφ Linear Dilaton Background and NS5-Branes,” 2008.
http://iopscience.iop.org/1126-6708/2008/06/080/pdf/1126-6708_2008_06_080.pdf

[18] E. Kiritsis and C. Kounnas, “Infrared Behavior of Closed Superstrings in Strong Magnetic and Gravitational Fields,” Nuclear Physics B, Vol. 456, No. 3, 1995, pp. 699-731.
doi:10.1016/0550-3213(95)00540-2

[19] S. Hassan and A. Sen, “Marginal Deformations of WZNW and Coset Models from O(d, d) Transformation,” Nuclear Physics B, Vol. 405, No. 1, 1993, pp. 143-165.
doi:10.1016/0550-3213(93)90429-S

[20] J. Frauendiener, “On the Penrose Inequality,” Physical Review Letters, Vol. 87, No. 100, 2001.
doi:10.1103/PhysRevLett.87.101101

[21] M. F. Parisi, “Propagation of Photons in Quantum Gravity,” Ph.D. Thesis, National Córdoba University, Córdoba, 2007.

[22] G. W. Gibbons, “The Isoperimetric and Bogomolny Inequalities for Black Holes,” In: T. J. Willmore and N. J. Hitchin, Eds., Global Riemannian Geometry, Ellis Horwood Halsted Press, Chichester, 1984, pp. 194-202.

[23] R. Geroch, “Asymptotic Structure of Space-Time,” Proceedings of a Symposium on Asymptotic Structure of Space-Time, Cincinnati, 14-18 June 1976, pp. 1-105.

[24] R. M. Kelly, “Asymptotically Anti-De Sitter Space-Time,” Twistor Newsletter, Vol. 20, 1985, pp. 11-23.

[25] K. P. Tod, “Penrose’s Quasilocal Mass and Isoperimetric Inequality for Static Black Holes Class,” Classical and Quantum Gravity, Vol. 2, No. 4, 1985, pp. L65-L68.
doi:10.1088/0264-9381/2/4/001

[26] J. Frauendiener and L. B. Szabados, “The Kernel of the Edth Operators on Higher-Genus Spacelike 2-Surfaces,” Classical and Quantum Gravity, Vol. 18, No. 6, 2001, pp. 1003-1014. doi:10.1088/0264-9381/18/6/303

[27] V. Schomerus, “Lectures on Branes in Curved Backgrounds,” Classical and Quantum Gravity, Vol. 19, No. 22, 2002, p. 5781. doi:10.1088/0264-9381/19/22/305

[28] A. J. Dougan, “Quasi-Local Mass for Spheres,” Classical and Quantum Gravity, Vol. 9, No. 11, 1992, pp. 24612475. doi:10.1088/0264-9381/9/11/012

[29] N. M. J. Woudhouse, “Cylindrical Gravitational Waves Class,” Classical and Quantum Gravity, Vol. 6, No. 6, 1989, pp. 933-943. doi:10.1088/0264-9381/6/6/017

[30] Y. Aharonov and D. Bohm, “Significance of Electromagnetic Potentials in Quantum Theory,” Physical Review, Vol. 115, No. 3, 1959, pp. 485-491.
doi:10.1103/PhysRev.115.485

[31] F. Bulnes, “Lagrangian Dynamics and Electromagnetic Gauges Applied to the Determination of Curvature of One Universe,” Proceedings of Internal 6th Canadian Centre for Isotopic Microanalysis, Habana, 2010, pp. 242-248.

[32] C. Ortix, S. O. G. Kiravittaya, O. G. Schmidt and J. Van den Brink, “Curvature-Induced Geometric Potential in Strain-Driven Nanostructures,” Physical Review B, Vol. 84, No. 4, 2011, Article ID: 045438.
doi:10.1103/PhysRevB.84.045438

[33] G. F. Smoot, “Cosmic Microwave Background Radiation Anisotropies: Their Discovery and Utilization,” Nobel Lecture, Nobel Foundation, 2006.
http://nobelprize.org/nobel_prizes/physics/laureates/2006/smoot-lecture.html

[34] E. Kiritsis and C. Kounnasa, “Curved Four-Dimensional Space-Time as Infrared Regulator in Superstring Theories,” Nuclear Physics B—Proceedings Supplements, Vol. 41, No. 1-3, 1995, pp. 331-340.
doi:10.1016/0920-5632(95)00441-B

[35] Smoot Group, “The Cosmic Microwave Background Radiation,” Lawrence Berkeley National Laboratory, Berkeley ,2008.