AM  Vol.3 No.6 , June 2012
Bounds for the Second Largest Eigenvalue of Real 3 × 3 Symmetric Matrices with Entries Symmetric about the Origin
ABSTRACT
Let ASn[a,b] denote a set of all real nxn symmetric matrices with entries in the interval [a,b]. In this article, we present bounds for the second largest eigenvalue λ2(A) of a real symmetric matrix A, such that AAS3 [-b,b].

Cite this paper
B. Geoffrey, K. Benard and J. Akanga, "Bounds for the Second Largest Eigenvalue of Real 3 × 3 Symmetric Matrices with Entries Symmetric about the Origin," Applied Mathematics, Vol. 3 No. 6, 2012, pp. 606-609. doi: 10.4236/am.2012.36094.
References
[1]   G. Constantine, “Lower Bounds for the Spectra of Symmetric Matrices with Nonnegative Entries,” Linear Algebra and its Applications, Vol. 65, 1985, pp. 171-178. doi:10.1016/0024-3795(85)90095-3

[2]   R. Roth, “On the Eigenvectors Belonging to the Minimum Eigenvalue of an Essentially Nonnegative Symmetric Matrix with Bipartite Graph,” Linear Algebra and Its Applications, Vol. 118, 1989, pp. 1-10. doi:10.1016/0024-3795(89)90569-7.

[3]   X. Zhan, “Extremal Eigenvalues of Real Symmetric Matrices with Entries in an Interval,” Siam Journal of Matrix Analysis and Applications, Vol. 27, No. 3, 2006, pp. 851-860. doi:10.1137/050627812

[4]   J. Kopp, “Efficient Numerical Diagonalization of 3 × 3 Hermitian Matrices,” International Journal of Modern Physics C, Vol. 19, No. 3, 2008, pp. 523-548. doi:10.1142/S0129183108012303

[5]   J. Brenner, “Hadamard Maximum Determinant Problem,” The American Mathematical Monthly, Vol. 79, No. 6, 1972, pp. 626-630.

[6]   N. J. A Sloan and P. Simon, “The Encyclopaedia of Integer Sequences,” Academic Press Inc., London, 1995.

 
 
Top