AAD  Vol.1 No.1 , June 2012
Human butyrylcholinesterase knock-out equivalent: Potential to assess role in Alzheimer’s disease
ABSTRACT
Butyrylcholinesterase (BChE) is an enzyme which has been shown to be involved in the patho-genesis, treatment and prognosis of Alzheimer’s disease. In its current form, however, evidence is equivocal with all of the associations. Variant forms of the protein exist, where the enzymatic function is lost to varying degrees. We performed in silico evaluation of these variants. Bioinformatics and molecular modeling, based on data from ESTHER database and Protein Data Bank (RCSB), were used for in silico predictions of the structures of the silent variants that involve a single amino acid change. Variants with loss of enzyme activity were evaluated for structural changes near the active site and the thermody-namic stability of the variants was estimated. The results indicated that the loss of activity of the variants can, in most cases, be attributed to structural changes in the active site or to lower thermodynamic stability. Our results showed that the loss of enzyme activity may be due to changes in the active site, oligomerization or loss of structural stability. Individuals with loss of function mutation of BChE can be studied and followed up for their proneness or resistance to cognitive decline with aging.

Cite this paper
Sridhar, G., Sekhar, T., Rao, P. and Rao, A. (2012) Human butyrylcholinesterase knock-out equivalent: Potential to assess role in Alzheimer’s disease. Advances in Alzheimer's Disease, 1, 1-11. doi: 10.4236/aad.2012.11001.
References
[1]   Orhan, I.E. (2012) Current concepts on selected plant secondary metabolites with promising inhibitory effects against enzymes linked to Alzheimer’s disease. Current Medicinal Chemistry, 19, 2252-2261.

[2]   Pohanka, M. (2011) Cholinesterases, a target of pharmacology and toxicology. Biomedical Papers of the Medical Faculty of the University Palacky, 155, 212-229. doi:10.5507/bp.2011.036

[3]   Goodall, R. (2004) Cholinesterase: Phenotyping and geno- typing. Annals of Clinical Biochemistry, 41, 98-110. doi:10.1258/000456304322879971

[4]   Taylor, P. (1991) The cholinesterases. Journal of Biologi- cal Chemistry, 266, 4025-4028.

[5]   Silman, I. and Sussman, J.L. (2008) Acetylcholinesterase: How is structure related to function? Chemico-Biological Interactions, 175, 3-10. doi:10.1016/j.cbi.2008.05.035

[6]   Cokugras, A.N. (2003) Butyrylcholinesterase: Structure and physiological importance. Turkish Journal of Biochemistry, 28, 54-61.

[7]   Maekawa, M., Sudo, K., Dey, D.C., Ishikawa, J., Izumi, M., Kotani. K. and Kanno, T. (1997) Genetic mutations of butyrylcholine esterase identified from phenotypic ab- normalities in Japan. Clinical Chemistry, 43, 924-929.

[8]   Levano, S., Ginz, H., Siegemund, M., Flipovic, M., Voronkov, E., Urwyler, A. and Girard, T. (2005) Genotyping the butyrylcholinesterase in patients with prolonged neuromuscular block after succinylcholine. Anesthesiology, 102, 531-535.

[9]   Parmo, S.L.P., Bartels, C.F., Wiersema, B., van der Spek, A.F., Innis, J.W. and La Du, B.N. (1996) Characterization of 12 silent alleles of the human butyrylcholinesterase (BCHE) gene. American Journal of Human Genetics, 58, 52-64.

[10]   Boberg, D.R., Alle, L.F., Soua, L.R. and Maia, E.A.C. (2010) Molecular forms of butrylcholinesterase and obe- sity. Genetics and Molecular Biology, 33, 452-454. doi:10.1590/S1415-47572010005000072

[11]   Manoharan, I., Wieseler, S., Layer, P.G., Lockridge, O. and Boopathy, R. (2006) Naturally occurring mutation Leu307Pro of human butyrylcholinesterase in the Vysya community of India. Pharmacogenetics and Genomics, 16, 461-468.

[12]   Ciro, A., Park, J., Burkhard, G., Yan, N. and Geula, C. (2012) Biochemical differentiation of cholinesterases from nor- mal and Alzheimer’s disease cortex. Current Alzheimer Research, 9, 138-143. doi:10.2174/156720512799015127

[13]   Garcia-Ayllon, M.S., Riba-Liena, I., Serra-Basante, C., Alom, J., Boopathy, R. and Saez-Valero, J. (2010) Altered levels of acetylcholinesterase in Alzheimer plasma. PLoS One, 5, e8701.

[14]   Darvesh, S., Reid, G.A. and Martin, E. (2010) Biochemical and histochemical comparison of cholinesterases in normal and Alzheimer brain tissues. Current Alzheimer Research, 7, 386-400. doi:10.2174/156720510791383868

[15]   Podoly, E., Hanin, G. and Soreq, H. (2010) Alanine-to- threonine substitutions and amyloid diseases: Butyrylcho- linesterase as a case-study. Chemico-Biological Interactions, 187, 64-71. doi:10.1016/j.cbi.2010.01.003

[16]   Bullock, R. and Lane, R. (2007) Executive dyscontrol in dementia, with emhasis on subcortical pathology and the role of butyrylcholinesterase. Current Alzheimer Research, 4, 277-293. doi:10.2174/156720507781077313

[17]   Darreh-Shori, T., Forsberg, A., Modiri, N., Andreasen, N., Blennow, K., Kamil, C., Ahmed, H., Almkvist, O., Langstrom, B. and Nordberg, A. (2011) Differential levels of apolipoprotein E and butyrylcholinesterase show strong association with pathological signs of Alzheimer’s disease in the brain in vivo. Neurobiology of Aging, 32, e15- e32.

[18]   Lane, R.M. and He, Y. (2012) Butyrylcholinesterase geno- type and gender influence Alzheimer’s disease phenotype. Alzheimers Dement, in press. doi:10.1016/j.jalz.2010.12.005

[19]   Darreh-Shori, T., Siawesh, M., Mousavi, M., Andreasen, N. and Nodberg, A. (2012) Apoliporotein E4 modulates phenotype of butyrylcholinesterase in CSF of patients with Alzheime’s disease. Journal of Alzheimers Disease, 28, 443-458.

[20]   Darreh-Shori, T., Modiri, N., Blennow, K., Baza, S., Ka- mil, C., Ahmed, H., Andreasen, N. and Nordberg, A. (2011) The apolipoprotein E ε4 allele plays pathological roles in AD through high protein expression and interacttion with butyrylcholinesterase. Neurobiology of Aging, 32, 1246- 1248. doi:10.1016/j.neurobiolaging.2009.07.015

[21]   Lane, R., Feldman, H.H., Meyer, J., He, Y., Ferris, S.H., Nordberg, A., Darreh-Shori, T., Soininen, H., Pirttila, T., Farlow, M.R., Sfikas, N., Ballard, C. and Greig, N.H. (2008) Synergistic effect of apolipoprotein E epsilon4 and bu- tyrylcholinesterase K-variant on progression from mild cognitive impairment to Alzheimer’s disease. Pharmaco- genet Genomics, 18, 289-298. doi:10.1097/FPC.0b013e3282f63f29

[22]   Lane, R., He, Y., Morris, C., Leverenz, J.B., Emre, M. and Ballard, C. (2009) BuChe-K and APOE epsilon4 al- lele frequencies in Lewy body dementias, and influence of genotype and hyperhomocysteinemia on cognitive de- cline. Movement Disorders, 24, 392-400. doi:10.1002/mds.22357

[23]   Mateo, I., Llorca, J., Infante, J., Rodriguez-Rodriguez, E., Berciano, J. and Combarros, O. (2008) Gene-gene inter- action between 14-3-3 zeta and butyrylcholinesterase modulates Alzheimer’s disease risk. European Journal of Neurology, 15, 219-222. doi:10.1111/j.1468-1331.2008.02059.x

[24]   Sridhar, G.R., Rao, A.A., Srinivas, K., Nirmala, G., Lakshmi, G., et al. (2010) Butyrylcholinesterase in metabolic syndrome. Medical Hypotheses, 75, 648-651. doi:10.1016/j.mehy.2010.08.008

[25]   Sridhar, G.R., Thota, H., Allam, A.R., et al. (2006) Alzheimer’s disease and type 2 diabetes mellitus: The cholinesterase connection? Lipids in Health and Disease, 5, 28. doi:10.1186/1476-511X-5-28

[26]   Sridhar, G.R. and Nirmala, G. (2002) Inborn errors in lipid metabolism. In: Tripathy, B.B. and Das, S. Eds., Lipid Disorders, Association of Physicians of India, College of Physicians, Guwahati, 59-80.

[27]   Sridhar, G.R. (2011) Proteins of the esterase family: Patents for some proteins in search of metabolic functions. Recent Patents on Biomarkers, 1, 205-212.

[28]   Deniz-Naranjo, M.C., Munoz-Fernande, C., Alemany-Ro- driguez, M.J., del Perez-Vieitez, C.M., Aldro-Benito, Y., Irurita-Latasa, J. and Sanchez-Gracia, F. (2007) Butyrylcholinesterase, ApoE and Alzheimer’s disease in a popu- lation from the Canary Islands (Spain). Neuroscience Letters, 427, 34-38. doi:10.1016/j.neulet.2007.08.059

[29]   Piccardi, M., Congiu, D., Squassina, A., Manconi, F., Putzu, P.F., Mereu, R.M., Chillotti, C. and Del Zompo, M. (2007) Alzheimer’s disease: Case-control association stu- dy of polymorphisms in ACHE, CHAT, and BCHE genes in a Sardinian sample. American Journal of Medical Ge- netics Part B: Neuropsychiatric Genetics, 144B, 895-899. doi:10.1002/ajmg.b.30548

[30]   Luschchekina, S.V., Grigorenko, B.L., Morozov, D.I., Polya- kov, I.V., Nemukhin, A.V. and Varfolomeev, S.D. (2010) Modeling of the mechanism of hydrolysis of succinylcholine in the active site of native and modified (Asp70Gly) human butyrylcholinesterase. Russian Chemical Bulletin, 59, 55-60. doi:10.1007/s11172-010-0044-0

[31]   Nicolet, Y., Lockridge, O., Masson, P., Fontecilla-camps, J.C. and Nachon, F. (2003) Crystal structure of human butyrylcholinesterase and of its complexes with substrate and products. Journal of Biological Chemistry, 278, 41141- 41147. doi:10.1074/jbc.M210241200

[32]   Ngamelue, M.N., Homma, K., Lockridge, O. and Asojo, O.A. (2007) Crystallization and X-Ray structure of full length recombinant human butyrylcholinesterase. Acta Crystallographica Section F: Structural Biology and Crys- tallization Communications, 63, 723-727. doi:10.1107/S1744309107037335

[33]   Worth, C.L., Bickerton, G.R., Schreyer, A., Forman, J.R., Cheng, T.M., Lee, S., Gong, S., Burke, D.F. and Blundell, T.L. (2007) A structural bioinformatics approach to the analysis of nonsynonymous single nucleotide polymorphisms (nsSNPs) and their relation to disease. Journal of Bioinformatics and Computational Biology, 5, 1297-1318. doi:10.1142/S0219720007003120

[34]   Hotelier, T., Renault, L., Cousin, X., Negre, V., Marchot, P. and Chatonnet, A. (2004) ESTHER, the database of the α/β-hydrolase fold superfamily of proteins. Nucleic Acids Research, 32, D145-D147. doi:10.1093/nar/gkh141

[35]   Corpet, F. (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Research, 16, 10881- 10890. doi:10.1093/nar/16.22.10881

[36]   Thompson, J.D., Higgins, D.G. and Gibson, T.J. (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673-4680. doi:10.1093/nar/22.22.4673

[37]   Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.F., Brice, M.D. Jr., Rodgers, J.R., Kennard, O., Shimanouchi, T. and Tasumi, M. (1977) The protein databank: A computer-based archival file for macromolecular structures. Journal of Molecular Biology, 112, 535-542. doi:10.1016/S0022-2836(77)80200-3

[38]   Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N. and Bourne, P.E. (2000) The Protein Data Bank. Nucleic Acids Research, 28, 235- 242. doi:10.1093/nar/28.1.235

[39]   Carletti, E., Li, H., Li, B., Ekstrom, F., Nicolet, Y., Loiodice, M., Gillon, E., Froment, M.T., Lockridge, O., Schopfer, L.M., Masson, P. and Nachon, F. (2008) Aging of choli- nesterases phosphorylated by tabun proceeds through odealkylation. Journal of the American Chemical Society, 130, 16011-16020. doi:10.1021/ja804941z

[40]   Felsenstein, J. (1989) PHYLIP: Phylogeny Inference Pack- age (Version 3.2). University of Washington, Seattle.

[41]   Treeview. http://darwin.zoology.gla.ac.uk/~rpage/treeviewx/index.html

[42]   Perrière, G. and Gouy, M. (1996) WWW-query: An on-line retrieval system for biological sequence banks. Biochimie, 78, 364-369. doi:10.1016/000-9084(96)84768-7

[43]   De Lano, W. The PyMOL Molecular Graphics System, Schrödinger, LLC. http://www.pymol.org

[44]   Liang, J., Edelsbrunner, H. and Woodward, C. (1998) Anat- omy of protein pockets and cavities: Measurement of binding site geometry and implications for ligand design. Protein Science, 7, 1884-1897. doi:10.1002/pro.5560070905

[45]   Dundas, J., Ouyang, Z., Tseng, J., Binkowski, A., Turpaz, Y. and Liang, J. (2006) CASTp: Computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Research, 34, W116-W118. doi:10.1093/nar/gkl282

[46]   Dehouck, Y., Grosfils, A., Folch, B., Gilis, D., Bogaerts, P. and Rooman, M. (2009) Fast and accurate predictions of protein stability changes upon mutations using statistical potentials and neural networks: PoPMuSiC-2.0. Bioin- formatics, 25, 2537-2543. doi:10.1093/bioinformatics/btp445

[47]   Capriotti, E., Fariselli, P. and Casadi, R. (2005) I-Mutant2.0: Predicting stability changes upon mutation from the pro- tein sequence or structure. Nucleic Acids Research, 33, W306-W310. doi:10.1093/nar/gki375

[48]   Sali, A. and Blundell, T.L. (1993) Comparative protein modelling by satisfaction of spatial restraints. Journal of Molecular Biology, 234, 779-815. doi:10.1006/jmbi.1993.1626

[49]   Marti-Renom, M.A., Stuart, A., Fiser, A., Sánchez, R., Melo, F. and Sali, A. (2000) Comparative protein structure modeling of genes and genomes. Annual Review of Biophysics and Biomolecular Structure, 29, 291-325.

[50]   Asanuma, K., Yagihashi, A., Yagihashi, A., Uehara, N., Kida, T. and Watanabe, N. (1999) Three point mutations of human butyrylcholinesterase in a Japanese family and the alterations of three-dimensional structure. Clinica Chimica Acta, 283, 33-42. doi:10.1016/S0009-8981(99)00030-3

[51]   Pan, Y., Muzyka, J. and Zhan, C.G. (2009) Model of human butyrylcholinesterase (BChE) tetramer by homology modeling and dynamics simulation. Journal of Physical Chemistry B, 113, 6543-6552. doi:10.1021/jp8114995

[52]   Vyas, S., Beck, J.M., Xia, S., Zhang, J. and Hadad, C.M. (2010) Butyrylcholinesterase and G116H, G116S, G117H, G117N, E197Q and G117H/E197Q mutants: A molecular dynamics study. Chemico-Biological Interactions, 187, 241-245. doi:10.1016/j.cbi.2010.04.004

[53]   Zheng, F., Yang, W., Xue, L., Hou, S., Liu, J. and Zhan, C.G. (2010) Design of high-activity mutants of human butyrylcholinesterase against (-)-cocaine: Structural and energetic factors affecting the catalytic efficiency. Bio- chemistry, 49, 9113-9119. doi:10.1021/bi1011628

[54]   Bartels, C.F., Jensen, F.S., Lockridge, O., van der Spek A, F.L., Rubinstein, H.M., Lubrano, T., La Du, B.N. (1992) DNA mutation associated with the human butyrylcholinsterase K-variant and its linkage to the atypical variant mutation and other polymorphic sites. American Journal of Human Genetics, 50, 1086-1103.

[55]   Li, B., Duysen, E.G., Carlson, M. and Lockridge, O. (2008) The butyrylcholinesterase knockout mouse as a model for human butyrylcholinesterase deficiency. Journal of Phar- macology and Experimental Therapeutics, 324, 1146-1154. doi:10.1124/jpet.107.133330

[56]   Li, B., Duysen, E.G. and Lockridge, O. (2008) The buty- rylcholinesterase knockout mouse is obese on a high-fat diet. Chemico-Biological Interactions, 175, 88-91. doi:10.1016/j.cbi.2008.03.009

[57]   Duysen, E.G., Li, B. and Lockridge, O. (2009). The buty- rylcholinesterase knockout mouse as a research tool in the study of drug sensitivity, bio-distribution, obesity and Alzheimer’s disease. Expert Opinion on Drug Metabo- lism and Toxicology, 5, 523-528.

[58]   Indumathi, M., Rathnam, B., Sultan, D. and Lockridge, O. (2007) A medical health report on individuals with silent butyrylcholinesterase in the Vysya community of India. Clinica Chimica Acta, 378, 128-135. doi:10.1016/j.cca.2006.11.005

 
 
Top