AM  Vol.3 No.6 , June 2012
Some Properties on the Function Involving the Gamma Function
Abstract: We studied the monotonicity and Convexity properties of the new functions involving the gamma function, and get the general conclusion that Minc-Sathre and C. P. Chen-G. Wang’s inequality are extended and refined.
Cite this paper: B. Chen, "Some Properties on the Function Involving the Gamma Function," Applied Mathematics, Vol. 3 No. 6, 2012, pp. 587-589. doi: 10.4236/am.2012.36090.

[1]   H. Minc and L. Sathre, “Some Inequalities Involving ,” Proceedings of the Edinburgh Mathematical Society, Vol. 14, No. 65, 1964, pp. 41-46. doi:10.1017/S0013091500011214

[2]   B.-N. Guo and F. Qi, “Inequalities and Monotonicity for the Ratio of Gamma Functions,” Taiwanese Journal of Mathematics, Vol. 7, No. 2, 2003, pp. 239-247.

[3]   F. Qi, “Inequalities and Monotonicity of Sequences Involving ,” Soochow Journal of Mathematics, Vol. 29, No. 4, 2003, pp. 353-361.

[4]   F. Qi and Q.-M. Luo, “Generalization of H. Minc and J. Sathre’s Inequality,” Tamkang Journal of Mathematics, Vol. 31, No. 2, 2000, pp. 145-148.

[5]   D. Kershaw and A. Laforgia, “Monotonicity Results for the Gamma Function,” Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., Vol. 119, 1985, pp. 127-133.

[6]   C.-P. Chen and G. Wang, “Monotonicity and Logarithmic Convexity Properties for the Gamma Function,” Scientia, Vol. 5, No. 1, 2009, pp. 51-54.

[7]   M. Abramowitz and I. A. Stegun (Eds.), “Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards,” Applied Mathematics Series, 4th Printing, Washington, Vol. 55, 1965.