AM  Vol.3 No.6 , June 2012
Oscillation of Higher Order Linear Impulsive Dynamic Equations on Time Scales
ABSTRACT
In this paper, we will establish some oscillation criteria for the higher order linear dynamic equation on time scale in term of the coefficients and the graininess function. We illustrate our results with an example.

Cite this paper
C. Zhang and F. Deng, "Oscillation of Higher Order Linear Impulsive Dynamic Equations on Time Scales," Applied Mathematics, Vol. 3 No. 6, 2012, pp. 581-586. doi: 10.4236/am.2012.36089.
References
[1]   R. P. Agarwal and M. Bohner, “Basic Calculus on Time Scales and Some of Its Applications,” Results in Mathematics, Vol. 35, 1999, pp. 3-22.

[2]   M. Bohner and A. Peterson, “Dynamic Equations on Time Scales: An Introduction with Applications,” Birkh?user, Boston, 2001.

[3]   L. H. Erbe, “Oscillation Criteria for Second Order Linear Equations on Atime Scale,” Canadian Applied Mathematics Quarterly, Vol. 9, No. 4, 2001, pp. 345-375.

[4]   A. Del Medico and Q. K. Kong, “Kamenev-Type and Interval Oscillation Critera for Second-Order Linear Differential Equations on a Measure Chain,” Journal of Mathematical Analysis and Applications, Vol. 294, 2004, pp. 621-643. doi:10.1016/j.jmaa.2004.02.040

[5]   M. Benchohra, S. Hamani and J. Henderson, “Oscillation and Nonoscillation for Impulsive Dynamic Equations on Certain Time Scales,” Advances in Difference Equations, Vol. 2006, 2006, pp. 1-12. doi:10.1155/ADE/2006/60860

[6]   M. Benchohra, J. Henderson, S. K. Ntouyas and A. Ouahab, “On First Order Impulsive Dynamic Equations on Time Scales,” Journal of Difference Equations and Applications, Vol. 10, No. 6, 2004, pp. 541-548. doi:10.1080/10236190410001667986

[7]   L. Erbe and A. Peterson, “Oscillation Criteria for Second-Order Matrix Dynamic Equations on Time Scales,” Journal of Mathematical Analysis and Applications, Vol. 275, 2002, pp. 418-438. doi:10.1016/S0022-247X(02)00390-6

 
 
Top