JMMCE  Vol.1 No.2 , October 2002
Unburned Carbon from Fly Ash for Mercury Adsorption: II. Adsorption Isotherms and Mechanisms
ABSTRACT
Adsorption behavior of unburned carbons from fly ash has been investigated in this study. Batch tests and column test were carried out for several unburned carbon samples from various ash sources and processing schemes. Adsorption isotherms have been obtained from these tests. Results show that the unburned carbons have equal or better adsorption capacity for elemental mercury comparing with some general purpose commercial activated carbons at low gas phase mercury concentration that is in the range of power plant emissions. Also it has been found that heat treatment of unburned carbon in the presence of air at 400℃ enhanced the adsorption capacity, and the adsorption capacity decreased with the increase of the adsorption temperature. The mechanism of mercury adsorption on the unburned carbon was explained by the physical and chemical interaction between mercury and primary sites on the carbon surface.

Cite this paper
Z. Li, X. Sun, J. Luo and J. Hwang, "Unburned Carbon from Fly Ash for Mercury Adsorption: II. Adsorption Isotherms and Mechanisms," Journal of Minerals and Materials Characterization and Engineering, Vol. 1 No. 2, 2002, pp. 79-96. doi: 10.4236/jmmce.2002.12006.
References
[1]   Hwang, J.; Sun, X.; Li, Z. submitted to Environ. Sci. Technol.

[2]   Chang, R.; Offen, G. R. Power Eng. 1995, 99, 51-57.

[3]   Young, B. C.; Miller, S. J.; Laudal, D. L. Presented at the 1994 Pittsburgh Coal Conference, Pittsburgh, PA, Sep 1994.

[4]   Sinha, R. K.; Walker, P. L. Carbon 1972, 10, 754-756.

[5]   Matsumura, Y. Atoms. Environ. 1974, 8, 1321-1327.

[6]   Otani, Y.; Kanaoka, C.; Usui, C.; Matsui, S.; Emi, H. Environ. Sci. Technol. 1986, 20, 735.

[7]   Otani, Y.; Emi, H.; Kanaoka, C.; Uchijima, I.; Nishino, H. Environ. Sci. Technol. 1988, 22, 708.

[8]   Meij, R. Water, Air, Soil Polut. 1991, 56, 21.

[9]   Chang, R.; Owens, D. EPRI J. 1994, July/Aug, 46.

[10]   Liberti, L.; Notarnicola, M.; Amicarelli, V.; Campanaro, V.; Roethe l, F.; Swanson, L. Waste Mange. Res. 1998, 16, 2, 183-189.

[11]   Krishnan, S. V.; Gullett, B. K.; Jozewicz, W. E. Environ. Sci. Technol. 1994, 28,1506-1512.

[12]   Coolidge, A. S. J. Am. Chem. Soc. 1927, 149, 949-1952.

[13]   Shiels, D. O. J. Phys. Chem. 1929, 33, 1398-1402.

[14]   EPA, , Mercury Study Report to Congress, 1997, EPA-452/R-97-10

[15]   Korpiel, J. A.; Vidic, R. D. Environ. Sci. Technol. 1997, 31, 2319-2325.

[16]   Liu, W.; Vidic, R. D.; Brown, T. D. Environ. Sci. Technol. 1998, 32, 531-538.

[17]   Bergstrom, J. G. T. Waste Mange. Res. 1986, 4, 57-64.

[18]   Hassett, D. J.; Eylands, K. E. Fuel, 1999, 78, 243-248.

[19]   Shannon D. Serre* and Geoffrey D. Silcox ; Adsorption of Elemental Mercury on the Residual Carbon in Coal Fly Ash, Industrial & Engineering Chemistry Research; 2000; 39(6); 1723-1730.

[20]   Tanaporn Sakulpitakphon, James C. Hower,* Alan S. Trimble, William H. Schram, and Gerald A. Thomas; Mercury by Fly Ash: Study of the Combustion of a High- Mercury Coal at a Utility Boiler, Energy & Fuels; 2000; (3); 727-733.

[21]   James C. Hower,* M. Mercedes Maroto-Valer, Darrell N. Taulbee, and Tanaporn Sakulpitakphon ; Mercury Capture by Distinct Fly Ash Carbon Forms, Energy & Fuels; 2000; 14(1); 224-226.

[22]   James C. Hower,* Robert B. Finkelman, Robert F. Rathbone, and Jennifer Goodman; Intra- and Inter-unit Variation in Fly Ash Petrography and Mercury Adsorption: Examples from a Western Kentucky Power Station, Energy & ; 2000; 14(1); 212-216.

[23]   P. Fermo, F. Cariati, S. Santacesaria, S. Bruni, M. Lasagni,# M. Tettamanti,# E. Collina,# and D. Pitea*# ; MSWI Fly Ash Native Carbon Thermal Degradation: A TG-FTIR Study, Environmental Science & Technology; 2000;

[24]   Dubini, M.M., J.Phys. Chem. 1965, 39(6), 697-704

[25]   Hall, B.; Schager, P.; Weesmaa, J. Chemosphere, 1995, 30, 4, 611-627

 
 
Top