A New Narrowband Phase Modulation Mathematical Identity

Show more

References

[1] A. V. Alekseev and N. V. Sushilov, “Analytic Solutions of Bloch and Maxwell-Bloch Equations in the Case of Arbitrary Field Amplitude and Phase Modulation” Physical Review A, Vol. 46, No. 1, 1992, pp. 351-355.
doi:10.1103/PhysRevA.46.351
PMid:9907870

[2]
N. Nayak and G. S. Agarwal, “Absorption and Fluorescence in Frequency-Modulated Fields under Conditions of Strong Modulation and Saturation” Physical Review A, Vol. 31, No. 5, 1985, pp. 3175-3182.
doi:10.1103/PhysRevA.31.3175
PMid:9895871

[3]
A. Hund, “Frequency Modulation,” McGraw-Hill, New York, 1942.

[4]
J. D. Jackson, “Classical Electrodynamics,” 3rd Edition, Wiley, New York, 1998.

[5]
J. G. Proakis and M. Salehi, “Communication Systems Engineering,” Prentice Hall, Upper Saddle River, 2001.

[6]
N. M. Blachman, “Noise and Its Effect on Communication,” 2nd Edition, Krieger Publishing Co., Malabar, 1982.

[7]
G. N. Watson, “A Treatise on the Theory of Bessel Functions,” 2nd Edition, Cambridge University Press, Cambridge, 1995.

[8]
S. Saadeh, J. Shultz and G. Salamo, “Experimental Observation of Chirped Continuous Pulse-Train Soliton Solutions to the Maxwell-Bloch Equations,” Optics Express, Vol. 8, No. 2, 2001, pp. 153-158.
doi:10.1364/OE.8.000153

[9]
L. A. Pipes, “Applied Mathematics for Engineers and Physicists,” 2nd Edition, McGraw-Hill, New York, 1958.

[10]
M. Abramowitz and I. A. Stegun, “Handbook of Mathematical Functions,” National Bureau of Standards, Washington DC, 1964.

[11]
N. M. Blachman and S. H. Mousavinezhad, “Trigonometric Approximation for Bessel Functions,” IEEE Tran- sactions on Aerospace and Electronic Systems, Vol. 22, No. 1, 1986, pp. 2-7. doi:10.1109/TAES.1986.310686

[12]
A. Yarvis, “Introduction to Optical Electronics,” 2nd Edition, Holt McDougal, Geneva, 1977.