[1] Dong, Z. and Layzell, D.B. (2001) H2 oxidation, O2 uptake and CO2 fixation in hydrogen treated soils. Plant and Soil, 229, 1-12. doi:10.1023/A:1004810017490
[2] Welbaum, G.E., Sturz, A.V., Dong, Z. and Nowak, J. (2004) Managing soil micro-organisms to improve productivity of agro-ecosystems. Critical Reviews in Plant Science, 23, 175-193. doi:10.1080/07352680490433295
[3] Vessey, J.K. (2003) Plant growth promoting rhizobacteria as bio-fertilizers. Plant and Soil, 255, 571-586. doi:10.1023/A:1026037216893
[4] Dey, R., Pal, K.K., Bhatt, D.M. and Chauhan, S.M. (2004) Growth promotion and yield of peanut (Arachis hypogea L.) by application of plant growth-promoting rhizobacteria. Microbiological Resesearch, 1, 371-394. doi:10.1016/j.micres.2004.08.004
[5] Esitken, A., Pirlak, L., Turan, M. and Sahin, F. (2006) Effects of floral and foliar application of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrition of sweet cherry. Scientia Horticulturae, 110, 324-327. doi:10.1016/j.scienta.2006.07.023
[6] Farag, M.A., Ryu, G.M., Sumner, L.W. and Paré, P.W. (2006) GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth and induced sys- temic resistance in plants. Phytochemistry, 67, 2262-2268. doi:10.1016/j.phytochem.2006.07.021
[7] Hunter, W.J. (1993) Ethylene production by root nodules and effect of ethylene on nodulation in glycine max. Applied and Environmental Microbiology, 59, 1947-1950.
[8] Nascimento, F., Brigido, C. and Glick, B.R. (2012) Enhanced chickpea growth-promotion ability of a Mesorhizobium strain expressing an exogenous ACC deaminase gene. Plant and Soil, 353, 221-230. doi:10.1007/s11104-011-1025-2
[9] Shah, S., Li, J., Moffatt, B.A. and Glick, B.R. (1998) Isolation and characterization of ACC deaminase genes from two different plant growth-promoting rhizobacteria. Canadian Journal of Microbiology, 44, 833-843. doi:10.1139/w98-074
[10] Matos, A., Kerkhof, L. and Garland, J.L. (2005) Effects of Microbial Community Diversity on the Survival of Pseudomonas aeruginosa in the Wheat Rhizosphere. Microbial Ecology, 49, 257-264. doi:10.1007/s00248-004-0179-3
[11] Ping, L. and Bol-and, W. (2004) Signals from the underground: bacterial volatiles promote growth in Arabidopsis. Trends in Plant Science, 9, 263-266. doi:10.1016/j.tplants.2004.04.008
[12] Postgate J. (1998) Nitrogen fixation. 3rd Edition, Cam- bridge UP, Cam-bridge.
[13] Bullock, D.G. (1992) Crop rotation. Critical Reviews in Plant Sciences, 11, 309-326.
[14] Schubert, K.R. and Evans, H.J. (1976) Hydrogen evolution: A major factor affecting the efficiency of nitrogen fixation in nodulated symbionts. Proceedings of the National Academy of Sciences of the United States of America, 73, 1207-1211. doi:10.1073/pnas.73.4.1207
[15] Dixon, R.O.D. (1972) Hydrogenase in legume root nodule bacteroids: Occurrence and properties. Achives of Microbiology, 85, 193-201. doi:10.1007/BF00408844
[16] Ruiz-Argüeso, T., Maier, R.J. and Evans, H.J. (1979) Hydrogen evolution from alfalfa and clover nodules and hydrogen uptake by free-living Rhizobium meliloti. Applied and Environmental Microbiology, 37, 582-587.
[17] Uratsu, S.L., Keyser, H.H., Weber, D.F. and Lim, S.T. (1982) Hydrogen uptake (HUP) activity of Rhizobium japonicum from major U.S. soybean production areas. Crop Science, 22, 600-602. doi:10.2135/cropsci1982.0011183X002200030040x
[18] Baginsky, C., Brito, B., Imperial, J., Ruiz-Argüeso, T. and Palacios, J.M. (2005). Symbiotic hydrogenase activity in Bradyrhizobium sp. (Vigna) increases nitrogen content in Vigna unguiculata plants. Applied Environmental Microbiology, 71, 7536-7538. doi:10.1128/AEM.71.11.7536-7538.2005
[19] Dong, Z., Wu, L., Kettlewell, B., Caldwell, C.D. and Layzell, D.B. (2003) Hydrogen fertilization of soils—Is this a benefit of legumes in rotation? Plant Cell and Environment, 26, 1875-1879. doi:10.1046/j.1365-3040.2003.01103.x
[20] Conrad, R. and Seiler, W. (1979) The role of H2 bacteria during the decomposition of H2 by soil. FEMS Microbiology Letters, 6, 143-145. doi:10.1111/j.1574-6968.1979.tb04296.x
[21] La Favre, J.S. and Focht, D.D. (1983) Conservation in soil of H2 li-berated from N2 fixation by Hup– nodules. Applied and Environmental Microbiology, 46, 304-311.
[22] Zhang, Y. (2006). Mechanisms of isolated hydrogen-oxidizing bacteria in plant growth promotion and effects of hydrogen metabolism on rhizobacterial community structure. Master’s Thesis, Saint Mary’s University, Hali- fax.
[23] Maimaiti, J., Zhang, Y., Yang, J., Cen, Y.-P., Layzell, D.B., Peoples, M. and Dong, Z. (2007) Isolation and characterization of hydrogen-oxidizing bacteria induced following exposure of soil to hydrogen gas and their impact on plant growth. Environmental Microbiology, 9, 435- 444. doi:10.1111/j.1462-2920.2006.01155.x
[24] Irvine, P., Smith, M. and Dong, Z. (2004) Hydrogen fer- tilizer: bacteria or fungi? Acta Horticulturae, 631, 239- 242.
[25] LaRue, T.A. and Patterson, T.G. (1981) How much do legumes fix? Advances in Agronomy, 34, 15-38. doi:10.1016/S0065-2113(08)60883-4
[26] Hunt, S. and Layzell, D.B. (1993) Gas exchange of leg- ume nodules and the regulation of nitrogenase activity. Annual Review of Plant Physiology and Plant Molecular Biology, 44, 483-511. doi:10.1146/annurev.pp.44.060193.002411
[27] Hesterman, O.B., Sheaffer, C.C., Barnes, D.K., Lueschen, W.E. and Ford, J.H. (1986). Alfalfa dry matter and nitrogen production and fertilizer nitrogen response in legume-corn rotations. Agronomy Journal, 78, 19-23. doi:10.2134/agronj1986.00021962007800010005x
[28] Dong, Z. and Layzell, D.B. (2002) Why do legumes nodules evolve hydrogen gas? The 13th International Congress on Nitrogen Fixation, 2-7 July 2001, Hamilton, 331- 335.
[29] Stein, S., Selesi, D., Schilling, R., Pattis, I., Schmid, M. and Hartmann, A. (2005) Microbial activity and bacterial composition of H2-treated soils with net CO2 fixation. Soil Biology & Biochemistry, 37, 1938-1945. doi:10.1016/j.soilbio.2005.02.035
[30] Dean, C., Sun, W., Dong, Z. and Caldwell, C.D. (2006) Soybean nodule hydrogen metabolism affects soil hydrogen uptake and growth of rotation crops. Canadian Journal of Plant Science, 86, 1355-1359. doi:10.4141/P06-082
[31] Garcia del Moral, L.F., Ramos, J.M. and Recalde, L. (1984) Tillering dynamics of winter barley as influenced by cultivar and nitrogen fertilizer: A field study. Crop Science, 24, 179-181. doi:10.2135/cropsci1984.0011183X002400010042x
[32] Garcia del Moral, M.B. and Garcia del Moral, L.F. (1995) Tiller production and yield in relation to grain yield in winter and spring barley. Field Crops Research, 44, 85- 93. doi:10.1016/0378-4290(95)00072-0
[33] Glick, B.R., Penrose, D.M. and Li, J. (1998) A model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. Journal of Theoretical Biology, 190, 63-68. doi:10.1006/jtbi.1997.0532
[34] Yang, S.F. and Hoffman, N.E. (1984) Ethylene biosynthesis and its regulation in higher plants. Annual Reviews of Plant Physiology, 35, 155-189. doi:10.1146/annurev.pp.35.060184.001103
[35] Wang, C., Knill, E., Glick, B.R. and Defago, G. (2000) Effect of transferring 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluores- cens strain CHAO and its gacA derivatives CHA96 on their growth-promoting and disease-suppressive capabilities. Canadian Journal of Microbiology, 46, 898-907.
[36] Mayak, S., Tirosh, T. and Glick, B.R. (2004) Plant growth promoting bacteria that confer resistance in tomato to salt stress. Plant Physiology and Biochemistry, 42, 565-572. doi:10.1016/j.plaphy.2004.05.009
[37] Grichko, V.P. and Glick, B.R. (2001) Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiology and Biochemistry, 39, 11-17. doi:10.1016/S0981-9428(00)01212-2