WJNSE  Vol.2 No.2 , June 2012
Formation of Photosensitizing Crystalline C60 Particles by Ink-Jet Method
ABSTRACT
The crystalline fullerene C60 particles were formed and immobilized on poly(dimethylsiloxane) (PDMS) substrates under the various discharge conditions by an ink-jet method, and investigated for the reactive oxygen species (ROS) generation property under visible light irradiation. The particles were synthesized by discharging a toluene solution dissolved C60 and poly(methyl methacrylate) (PMMA) with the ink-jet spotting system. The ROS generation was evaluated by comparisons of the fluorescence intensities measured for the formed particles under green laser irradiation and in a dark room using fluorescent dyes, 2’,7’-dichlorofluorescein diacetate and dihydroethidium. The results of transmission electron microscope (TEM) observation showed that the formed particles consisted of crystalline C60. The optimal ink-jet discharge conditions for synthesizing the particles to generate more ROS were found. In the case of the optimal conditions, the structure in which the needle-like particles were three-dimensionally formed was confirmed. The surface area of the crystalline C60 particles was calculated using the SEM observation results, and it was suggested that when the needle-like finer particles were three-dimensionally formed under the optimal conditions, increasing the surface area lead to an increase in the ROS generation amount.

Cite this paper
M. Ban and F. Sasaki, "Formation of Photosensitizing Crystalline C60 Particles by Ink-Jet Method," World Journal of Nano Science and Engineering, Vol. 2 No. 2, 2012, pp. 110-115. doi: 10.4236/wjnse.2012.22014.
References
[1]   E. Nakamura and H. Isobe, “Functionalized Fullerenes in Water,” Accounts of Chemical Research, Vol. 36, No. 11, 2003, pp. 807-815.

[2]   C. M. Sayes, J. D. Fortner, W. Gyo, D. Lyon, A. M. Boyd, K. D. Ausman, Y. J. Tao, B. Sitharaman, L. J. Wilson, J. B. Hughes, J. L. West and V. L. Colvin, “The Differential Cytotoxicity of Water-Soluble Fullerenes,” Nano Letters, Vol. 4, No. 10, 2004, pp. 1881-1887. doi:10.1021/nl0489586

[3]   Z. Markovic, B. Todorovic-Markovic, D. Kleut, N. Nikolic, S. Vranjes-Djuric, M. Misirkic, L. Vucicevic, K. Janjetovic, A. Isakovic, L. Harhaji, B. Babic-Stojic, M. Dramicanin and V. Trajkovic, “The Mechanism of Cell-Damaging Reactive Oxygen Generation by Colloidal Fullerene,” Biomaterials, Vol. 28, No. 36, 2007, pp. 5437-5448. doi:10.1016/j.biomaterials.2007.09.002

[4]   P. S. Dittrich, K. Tachikawa and A. Manz, “Micro Total Analysis Systems. Latest Advancements and Trends,” Analytical Chemistry, Vol. 78, No. 12, 2006, pp. 3887-3907. doi:10.1021/ac0605602

[5]   B.-J. de Gans, P. C. Duineveld and U. S. Schubert, “Inkjet Printing of Polymers: State of the Art and Future Developments,” Advanced Materials, Vol. 16, No. 3, 2004, pp. 203-213. doi:10.1002/adma.200300385

[6]   T. Okamoto, S. Tomohiro and Y. Nobuko, “Microarray Fabrication with Covalent Attachment of DNA Using Bubble Jet Technology,” Nature Biotechnology, Vol. 18, No. 4, 2000, pp. 438-441.

[7]   K. Abe, K. Suzuki and D. Citterio, “Inkjet-Printed Microfluidic Multianalyte Chemical Sensing Paper,” Analytical Chemistry, Vol. 80, No. 18, 2008, pp. 6928-6934. doi:10.1021/ac800604v

[8]   F. Sasaki, M. Suzuki and M. Ban, “Evaluation of Photosensitizing Properties of Crystalline C60 Particle Synthesized by Ink-Jet Method,” Carbon 2009 Presentation Extended Abstracts, Biarritz, 14-19 June 2009, Article ID: 426.

[9]   F. Sasaki and M. Ban, “Application of Inkjet-Fabricated Crystalline C60 Particles Generating Reactive Oxygen Species under Visible Light Irradiation to Microarray Chips,” The 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences (μTAS 2010), Groningen, 3-7 October 2010, Article ID: 0268.

[10]   W. I. F. David, R. M. Ibberson and T. Matsuo, “High Resolution Neutron Powder Diffraction: A Case Study of the Structure of C60,” Proceedings of the Royal Society A, Vol. 442, No. 1914, 1993, pp. 129-146. doi:10.1098/rspa.1993.0095

[11]   P. A. Heiney, J. E. Fisher, A. R. McGhie, W. J. Romanow, A. M. Denenstein, J. P. McCauley Jr., A. B. Smith and D. E. Cox, “Orientational Ordering Transition in Solid C60,” Physical Review Letters, Vol. 66, No. 22, 1991, pp. 2911-2914. doi:10.1103/PhysRevLett.66.2911

 
 
Top