OJSS  Vol.2 No.2 , June 2012
Stress-Tolerant Cassava: The Role of Integrative Ecophysiology-Breeding Research in Crop Improvement
ABSTRACT
This review highlights an integrative multidisciplinary eco-physiological, breeding and agronomical research on the tropical starchy root crop cassava conducted at CIAT. Laboratory and field studies have elucidated several physio-logical/biochemical mechanisms and plant traits underlying the high productivity in favorable conditions and tolerance to stressful environments, such as prolonged water stress and marginal low-fertility soils. Cassava is endowed with inherent high photosynthetic capacity expressed in near optimal environments that correlates with biological produc- tivity across environments and wide range of germplasm.Field-measured photosynthetic rates were also associated with root yield, particularly under prolonged drought. Extensive rooting systems and stomatal sensitivity to both atmospheric humidity and soil water shortages underlie tolerance to drought. The C4 phosphoenolpyruvate carboxylase (PEPC) was associated with photosynthesis and yield making it a selectable trait, along with leaf duration, particularly for stressful environments. Germplasm from the core collection was screened for tolerance to soils low in P and K, resulting in the identification of several accessions with good levels of tolerance. Cassava has a comparative advantage against major tropical food and energy crops in terms of biological productivity. Results also point to the importance of field research versus greenhouse or growth-chamber studies. In globally warming climate,the crop is predicted to play more role in tropical and subtropical agro-ecosystems. More research is needed under tropical field conditions to understand the interactive responses to elevated carbon dioxide, temperature, soil fertility, and plant water relations.

Cite this paper
M. El-Sharkawy, "Stress-Tolerant Cassava: The Role of Integrative Ecophysiology-Breeding Research in Crop Improvement," Open Journal of Soil Science, Vol. 2 No. 2, 2012, pp. 162-186. doi: 10.4236/ojss.2012.22022.
References
[1]   IFAD and FAO, “The World Cassava Economy, Facts, Trends and Outlook,” International Fund for Agricultural Development and Food and Agriculture Organization of the United Nations, Rome, 2000. http://www.scribd.com/doc/48938803/The-world-cassava-economy-I

[2]   A. C. Allem, “The Origin and Taxonomy of Cassava,” In: R.J. Hillocks, J. M. Thresh and A.C. Bellotti, Eds., Cassava: Biology, Production and Utilization, CABI Publishing, New York, 2002, pp. 1-16. doi:10.1079/9780851995243.0001

[3]   D. Ugent, S. Pozorski and T. Pozorski, “Archaelogical Manioc (Manihot) from Coastal Peru,” Economic Botany, Vol. 40, No. 1, 1986, pp. 78-102. doi:10.1007/BF02858949

[4]   M. A. El-Sharkawy, “Drought-tolerant Cassava for Africa, Asia, and Latin America,” Bioscience, Vol. 43, No. 7, 1993, pp. 441-451. doi:10.2307/1311903

[5]   A. M. Fermont,“Cassava and Soil Fertility in Intensifying Smallholder Farming Systems of East Africa,” Ph.D. Thesis, Wageningen Agricultural University, Wageningen, The Netherlands, 2009.

[6]   J. H. Cock, “Cassava: New Potential for a Neglected Crop,” Westview Press, Boulder and London, 1985.

[7]   H. H. Yeoh and V. D. Truong, “Protein Contents, Amino Acid Compositions and Nitrogen-to-protein Conversion Factors for Cassava Roots,” Journal of the Science of Food and Agriculture, Vol. 70, No. 1, 1996, pp. 51-54. doi:10.1002/(SICI)1097-0010(199601)70:1<51::AID-JSFA463>3.0.CO;2-W

[8]   H. H. Yeoh and M. Y. Chew, “Protein Content and Amino Acid Composition of Cassava Leaf,” Phytochemistry, Vol. 15, No. 11, 1976, pp. 1597-1599. doi:10.1016/S0031-9422(00)97435-1

[9]   P. A. Lancaster and J. E. Brooks, “Cassava Leaves as Human Food,” Economic Botany, Vol. 37, No. 3, 1983, pp. 331-348. doi:10.1007/BF02858890

[10]   J. A. Montagnac, C. R. Davis and S. A. Tanumihardjo, “Nutritional Value of Cassava for Use as Staple Food and Recent Advances for Improvement,” Composite Review in Food Science and Food Safety, Vol. 8, No. 3, 2009, pp. 181-194. doi:10.1111/j.1541-4337.2009.00077.x

[11]   V. N. Djuikwo, R. A. Ejoh, I. Gouado, C. M. Mbofung and S. A. Tanumihardjo, “Determination of Major Carotenoids in Processed Tropical Leafy Vegetables Indigenous to Africa,” Food and Nutrition Sciences, Vol. 2, No. 8, 2011, pp. 793-802. doi:10.4236/fns.2011.28109

[12]   A. J. A. Essers, “Removal of Cyanogens from Cassava Roots: Studies on Domestic Sun-Drying and Solid-Substrate Fermentation in Rural Africa,” Ph.D. Thesis, Wageningen Agricultural University, Wageningen, The Netherlands, 1995.

[13]   J. Cliff, H. Muquingue, D. Nhassico, H. Nzwalo and J. H. Bradbury, “Konzo and Continuing Cyanide Intoxication from Cassava in Mozambique,” Food and Chemical Toxicology, Vol. 49, No. 3, 2011, pp. 631-635. doi:10.1016/j.fct.2010.06.056 http://fws.aber.ac.uk/rec/CLIKAC.

[14]   T. Tylleskar, “The Association between Cassava and the Paralytic Disease Konzo,” Acta Horticulturae, Vol. 375, 1994, 321-331.

[15]   T. Tylleskar, M. Banea, N. Bikangi, R. D. Cooke, N. H. Poulter and H. Rosling, “Cassava Cyanogens and Konzo, an Upper Motor Neuron Disease in Africa,” The Lancet, Vol. 339, No. 8787, 1992, pp. 208-211. doi:10.1016/0140-6736(92)90006-O

[16]   V. Ravindran, “Cassava Leaves as Animal Feed: Potential and Limitations,” Journal of the Science of Food and Agriculture, Vol. 61, No. 2, 1993, pp. 141-150. doi:10.1002/jsfa.2740610202

[17]   J.L Gil and A. J. A. Buitrago,“La Yuca en la Alimentacion Animal,” In: B. Ospina, H. Ceballos, Eds., La Yuca en el Tercer Milenio: Sistemas Modernos de Produccion, Procesamiento, Utilizacion y Comercialización, Centro Internacional de Agricultura Tropical (CIAT), Cali, Colombia, 2002, pp. 527-569. http://www.clayuca.org/PDF/libro_yuca/capitulo28.pdf

[18]   C. Balagopalan, “Cassava Utilization in Food, Feed and Industry,” In: R. J. Hillocks, J. M. Thresh and A. C. Bellotti, Eds., Cassava: Biology, Production and Utilization, CABI Publishing, New York, 2002, pp. 301-318. doi:10.1079/9780851995243.0301

[19]   B. A. Keating, G. L. Wilson and J. P. Evenson,“Effects of Length, Thickness, Orientation, and Planting density of Cassava (Manihot esculenta Crantz) Planting Material on Subsequent Establishment, Growth, and Yield,” East Africa Agriculture and Forest Journal, Vol. 53, 1988, pp. 145-149.

[20]   D. Leihner, “Agronomy and Cropping Systems,” In: R. J. Hillocks, J. M. Thresh and A. C. Bellotti, Eds., Cassava: Biology, Production and Utilization, CABI Publishing, New York, 2002, pp. 91-113. doi:10.1079/9780851995243.0091

[21]   C.Iglesias, C. Hershey, F. Calle and A. Bola?os, “Propagating Cassava (Manihot esculenta) by Sexual Seed,” Experimental Agriculture, Vol. 30, No. 3, 1994, pp. 283- 290. doi:10.1017/S0014479700024388

[22]   Q. E. A. van Oirschot, G. M. O’Brian, D. Dufour, M. A. El-Sharkawy and E. Mesa, “The Effect of Pre-harvest Pruning of Cassava upon Root Deterioration and Quality Characteristics,” Journal of the Science of Food and Agriculture, Vol. 80, No. 13, 2000, pp. 1866-1873. doi:10.1002/1097-0010(200010)80:13<1866::AID-JSFA718>3.0.CO;2-H

[23]   World Bank, “Agricultural Research,” World Bank, Washington DC, 1981.

[24]   S. Wortman, “Beyond the Bottom Line,” The Rockefeller Foundation, New York, 1981.

[25]   R. J. Hillocks, J. M. Thresh and A. C. Bellotti, Eds., “Cassava: Biology, Production and Utilization,” CABI Publishing, New York, 2002.

[26]   K. Kawano, “Thirty Years of Cassava Breeding for Productivity-Biological and Social Factors for Success,” Crop Science, Vol. 43, No. 4, 2003, pp. 1325-1335. doi:10.2135/cropsci2003.1325

[27]   N. M. A. Nassar and A. R. Ortiz, “Cassava Improvement: Challenges and Impacts,” Journal of Agricultural Science, Vol. 145, No. 2, 2007, pp. 163-171. doi:10.1017/S0021859606006575

[28]   K.Kawano, P. Daza, A. Amaya A, M. Rios and W. M. F. Gon?alves, “Evaluation of Cassava Germplasm for Productivity,” Crop Science, Vol. 18, No. 3, 1978, pp. 377- 382. doi:10.2135/cropsci1978.0011183X001800030006x

[29]   J. H. Cock, D. Franklin, G. Sandoval and P. Juri, “The Ideal Cassava Plant for Maximum Yield,” Crop Science, Vol. 19, No. 2, 1979, pp. 271-279. doi:10.2135/cropsci1979.0011183X001900020025x

[30]   K. Kawano, “Harvest Index and Evolution of Major Food Crop Cultivars in the Tropics,” Euphytica, Vol. 46, No. 3, 1990, pp. 195-202. doi:10.1007/BF00027218

[31]   C. H. Hershey, and D. L. Jennings, “Progress in Breeding Cassava for Adaptation to Stress,” Plant Breeding Abstracts, Vol. 62, 1992, pp. 823-831.

[32]   D. L.Jennings and C. Iglesias, “Breeding for Crop Improvement,” In: R. J. Hillocks, J. M. Thresh and A. C. Bellotti, Eds., Cassava: Biology, Production and Utilization, CABI Publishing, New York, 2002, pp. 149-166. doi:10.1079/9780851995243.0149

[33]   J. H. Cock and M. A. El-Sharkawy, “Physiological Characteristics for Cassava Selection,” Experimental Agriculture, Vol. 24, 1988, pp. 443-448.

[34]   J. H.Cock and M. A. El-Sharkawy, “The Physiological Response of Cassava to Stress,” Proceedings 7th Symposium of the International Society of Tropical Root and Tuber Crops, Gosier (Guadeloupe), 1-6 July 1985, Institute National de la Recherche Agronomique (INRA), Paris, 1988, pp. 451-462.

[35]   M. A. El-Sharkawy, “Cassava Biology and Physiology,” Plant Molecular Biology, Vol. 56, No. 4, 2004, pp. 481- 501. doi:10.1007/s11103-005-2270-7

[36]   P. Pingali, “Prepared Remarks Presented at the World Food Prize Symposium,” Bill & Melinda Gates Foundation, Seattle, 2010. http://www.gatesfoundation.org/speeches-commentary/Pages/prabhu-pingali-2010-world-food-prize-symposium.aspx

[37]   M. A. El-Sharkawy, J. H. Cock, J. K. Lynam, A. D. P. Hernández and L. F. Cadavid, “Relationships between Biomass, Root-yield and Single-Leaf Photosynthesis in Field-Grown Cassava,” Field Crops Research, Vol. 25, No. 3-4, 1990, pp. 183-201. doi:10.1016/0378-4290(90)90002-S

[38]   T. Ramanujam, “Effect of Moisture Stress on Photosynthesis and Productivity of Cassava,” Photosynthetica, Vol. 24, No. 2, 1990, pp. 217-224.

[39]   J. B. O. Ogola and C. Mathews, “Adaptation of Cassava (Manihot esculenta) to the Dry Environments of Limpopo, South Africa: Growth, Yield and Yield Components,” African Journal of Agricultural Research, Vol. 6, No. 28, 2011, pp. 6082-6088.

[40]   M. A. El-Sharkawy, S. M. de Tafur and L. F. Cadavid, “Potential Photosynthesis of Cassava as Affected by Growth Conditions,” Crop Science, Vol. 32, No. 6, 1992, pp. 1336-1342. doi:10.2135/cropsci1992.0011183X003200060006x

[41]   M. A. El-Sharkawy and J. D. Hesketh, “Photosynthesis among Species in Relation to Characteristics of Leaf Anatomy and CO2 Diffusion Resistances,” Crop Science, Vol. 5, 1965, pp. 517-521. doi:10.2135/cropsci1965.0011183X000500060010x

[42]   M. A. El-Sharkawy, “International Research on Cassava Photosynthesis, Productivity, Eco-physiology, and Responses to Environmental Stresses in the Tropics,” Photosynthetica, Vol. 44, No. 4, 2006, pp. 481-512. doi:10.1007/s11099-006-0063-0

[43]   M. A. El-Sharkawy, Y. López and L. M. Bernal, “Genotypic Variations in Activities of Phosphoenolpyruvate Carboxylase (PEPC) and Correlations with Leaf Photosynthetic Characteristics and Crop Productivity of Cassava Grown in Lowland Seasonally Dry Tropics,” Photosynthetica, Vol. 46, No. 2, 2008, pp. 238-247. doi:10.1007/s11099-008-0038-4

[44]   CIAT, “Cassava Program Annual Report for 1993,” Centro Internacional de Agricultura Tropical, Cali, Colombia, 1993.

[45]   A. Jarvis, J. Ramirez-Villegas, B. V. H. Campo and C. Navarro-Racines, “Is Cassava the Answer to African Climate Change Adaptation,” Tropical Plant Biology, Vol. 5, No. 1, 2012, pp. 9-29. doi:10.1007/s12042-012-9096-7

[46]   D. M. Rosenthal and D. R. Ort, “Examining Cassava’s Potential to Enhance Food Security under Climate Change,” Tropical Plant Biology, Vol. 5, No. 1, 2012, pp. 30-38. doi:10.1007/s12042-011-9086-1

[47]   M. D. Fernández, M. D. W. Tezara, E. Rengifo and A. Herrera, “Lack of Down regulation of Photosynthesis in a Tropical Root Crop, Cassava, Grown under Elevated CO2 Concentration,” Functional Plant Biology, Vol. 29, No. 7, 2002, pp. 805-814. doi:10.1071/PP01165

[48]   L. H. Ziska, K. P. Hogan, A. P. Smith and B. G. Drake, “Growth and Photosynthesis Response of Nine Tropical Species with Long-term Exposure to Elevated Carbon Dioxide,” Oecologia, Vol. 86, No. 3, 1991, pp. 383-389. doi:10.1007/BF00317605

[49]   R. M. Gleadow, J. R. Evans, S. McCaffery and T. R. Cavagnaro, “Growth and Nutritive Value of Cassava (Manihot esculenta Crantz) are Reduced When Grown in Elevated CO2,” Plant Biology, Vol. 11, No. S1, 2009, pp. 76-82. doi:10.1111/j.1438-8677.2009.00238.x

[50]   D. Pellet and M. A. El-Sharkawy, “Cassava Varietal Response to Phosphorus Fertilization. I. Yield, Biomass and Gas Exchange,” Field Crops Research, Vol. 35, No. 1, 1993, pp. 1-11. doi:10.1016/0378-4290(93)90131-6

[51]   H. J. Veltkamp, “Physiological Causes of Yield Variation in Cassava,” Ph.D. Thesis, Wageningen Agricultural University, Wageningen, The Netherlands, 1985.

[52]   S. L. Tan and J. H. Cock, “Branching Habit as a Yield Determinant in Cassava,” Field Crops Research, Vol. 2, 1979, pp. 281-289. doi:10.1016/0378-4290(79)90029-7

[53]   M. A. El-Sharkawy, “How Can Calibrated Research-Based Models be Improved for Use as a Tool in Identifing Genes Controlling Crop Tolerance to Environmental Stresses in the Era of Genomics—From An Experimentalist’s Perspective,” Photosynthetica, Vol. 43, No. 2, 2005, pp. 161-176. doi:10.1007/s11099-005-0030-1

[54]   M. A. El-Sharkawy, “Cassava: Physiological Mechanisms and Plant Traits Underlying Tolerance to Prolonged Drought and Their Application for Breeding Cultivars in The Seasonally Dry and Semiarid Tropics,” In: F. M. da Matta, Ed., Ecophysiology of Tropical Tree Crops, Nova Science Publishers, Hauppauge, New York, 2010, pp. 71-110.

[55]   R. Sangpenchan, “Climate Change Impacts on Cassava Production in Northeast Thailand,” Msc Thesis, The Pennsylvania State University, University Park, PA., 2009. https://etda.libraries.psu.edu/paper/9952/5435

[56]   M. A. El-Sharkawy and J. H. Cock, “Water Use Efficiency of Cassava, I: Effects of Air Humidity and Water Stress on Stomatal Conductance and Gas Exchange,” Crop Science, Vol. 24, No. 3, 1984, pp. 497-502. doi:10.2135/cropsci1984.0011183X002400030017x

[57]   J. H. Cock, M. C. M. Porto and M. A. El-Sharkawy, “Water Use Efficiency of Cassava, III: Influence of Air Humidity and Water Stress on Gas Exchange of Field Grown Cassava,” Crop Science, Vol. 25, No. 2, 1985, pp. 265-272. doi:10.2135/cropsci1985.0011183X002500020015x

[58]   M. A.El-Sharkawy and J. H. Cock, “The Humidity Factor in Stomatal Control and Its Effect on Crop Productivity,” In: R. Marcelle, H. Clijsters and M. Van Poucke, Eds., Biological Control of Photosynthesis, Martinus Nijhoff Publishers, Dordrecht, Netherlands, 1986, pp. 187-198. doi:10.1007/978-94-009-4384-1_17

[59]   M. A. El-Sharkawy and L. F. Cadavid, “Response of Cassava to Prolonged Water Stress Imposed at Different Stages of Growth,” Experimental Agriculture, Vol. 38, No. 3, 2002, pp. 333-350. doi:10.1017/S001447970200306X

[60]   M. A. El-Sharkawy and S. M. de Tafur, “Comparative Photosynthesis, Growth, Productivity, and Nutrient Use Efficiency Among Tall- and Short-stemmed Rain-fed Cassava Cultivars,” Photosynthetica, Vol. 48, No. 2, 2010, pp.173-188. doi:10.1007/s11099-010-0023-6

[61]   G. Byju and M. H. Anand, “Differential Response of Short-and Long-duration Cassava Cultivars to Applied Mineral Nitrogen,” Journal of Plant Nutrition and Soil Science, Vol. 172, 2009, pp. 572-575. doi:10.1002/jpln.200800044

[62]   C. A. de Vries, J. D. Ferwerda and M. Flach, “Choice of Food Crop in Relation to Actual and Potential Production in the Tropics,” Netherlands Journal of Agricultural Science, Vol. 19, 1967, pp. 241-248.

[63]   T. L. T. Hguyen, S. H. Gheewala and S. Garivait, “Full Chain Energy Analysis of Fuel Ethanol from Cassava in Thailand,” Environmental Science Technology, Vol. 41, No. 11, 2007, pp. 4135-442. doi:10.1021/es0620641

[64]   W. Wang, “Cassava Production for Industrial Utilization in China—Present andFuture Perspective,” In: Cassava Research and Development in Asia: Exploring New Opportunities for an Ancient Crop, Seventh Regional Cassava Workshop, Bangkok, Thailand, 28 October-1 November 2002, pp. 33-38.

[65]   C. Jansson, A. Westerbergh, J. Zhang, X.Hud and C. Sun, “Cassava, a Potential Biofuel Crop in China,” Applied Energy, Vol. 86, 2009, pp. S95-S99. doi:10.1016/j.apenergy.2009.05.011

[66]   D. Hillel and C. Rosenzweig, Eds., “Handbook of Cli- mate Change and Agroecosystems: Impacts, Adaptation, and Mitigation,” Imperial College Press, London, 2011.

[67]   IPCC, “Fourth Assessment Report: Climate Change 2007 (AR4), Cambridge, UK and New York, 2007.

[68]   M. B. Kirkham, “Elevated Carbon Dioxide: Impacts on Soil and Plant Water Relations”, CRC Press, Boca Raton, 2011. doi:10.1201/b10812

[69]   M. A. El-Sharkawy, J. H. Cock and A. A. K. Held, “Water Use Efficiency of Cassava. II. Differing Sensitivity of Stomata to Air Humidity in Cassava and Other Warm- Climate Species,” Crop Science, Vol. 24, No. 3, 1984, pp. 503-507. doi:10.2135/cropsci1984.0011183X002400030018x

[70]   R. H. Howeler, “Long-term Effect of Cassava Cultivation on Soil Productivity,” Field Crops Research, Vol. 26, 1991, pp. 1-18. doi:10.1016/0378-4290(91)90053-X

[71]   R. H. Howeler, “Cassava Mineral Nutrition and Fertilization”, In: R. J. Hillocks, J. M. Thresh and A. C. Bellotti, Eds., Cassava: Biology, Production and Utilization, CABI Publishing, New York, 2002, pp. 115-147. doi:10.1079/9780851995243.0115

[72]   D. Pellet and M. A. El-Sharkawy, “Cassava Varietal Response to Phosphorus Fertilization, II: Phosphorus Uptake and Use Efficiency,” Field Crops Research, Vol. 35, No. 1, 1993, pp. 13-20. doi:10.1016/0378-4290(93)90132-7

[73]   CIAT, “Cassava Program Annual Report for 1994,” Centro Internacional de Agricultura Tropical, Cali, Colombia, 1994.

[74]   CIAT, “Cassava Program Annual Report for 1987-1991,” Centro Internacional de Agricultura Tropical, Cali, Colombia, 1991.

[75]   CIAT, “Cassava Program Annual Report for 1992,” Centro Internacional de Agricultura Tropical, Cali, Colombia, 1992.

[76]   S. M. de Tafur, M. A. El-Sharkawy and L. F. Cadavid, “Response of Cassava (Manihot esculenta Crantz) to Water Stress and Fertilization,” Photosynthetica, Vol. 34, No. 2, 1997, pp. 233-239. doi:10.1023/A:1006892607834

[77]   C.Iglesias, M. Bonierbale, M. El-Sharkawy, L. Lozano, A. Bellotti and C.Wheatley, “Focusing Basic Research for Cassava Varietal Improvement,” In: R. H. Howeler, Ed., Cassava Breeding, Agronomy Research and Technology Transfer in Asia, Centro International de Agricultura Tropical (CIAT), Cali, Colombia, 1995, pp. 40-60.

[78]   CIAT, “Cassava Program Annual Report for 1990,” Centro Internacional de Agricultura Tropical, Cali, Colombia, 1990.

[79]   M. A. El-Sharkawyand L. F. Cadavid, “Genetic Variation within Cassava Germplasm in Response to Potassium,” Experimental Agriculture, Vol. 36, No. 3, 2000, pp. 323- 334. doi:10.1017/S0014479700003045

[80]   CIAT, “Cassava Program Annual Report for 1995,” Centro Internacional de Agricultura Tropical, Cali, Colombia, 1995.

[81]   D. Pellet and M. A. El-Sharkawy, “Sink-Source Relations in Cassava: Effects of Reciprocal Grafting on Yield and Leaf Photosynthesis,” Experimental Agriculture, Vol. 30, No. 3, 1994, pp. 359-367. doi:10.1017/S0014479700024479

[82]   R. H. Howeler, “Potassium Nutrition of Cassava,” In: R. D. Munson, Ed., Potassium in Agriculture, American Society of Agronomy, Madison, Wisconsin, 1985, pp. 819 841.

[83]   G. O. Obigbesan, “Investigations on Nigerian Root and Tuber Crops: Response of Cassava Cultivars to Potassium Fertilizer in Western Nigeria,” Journal of Agricultural Science, Vol. 89, No. 1, 1977, pp. 23-27. doi:10.1017/S0021859600027155

[84]   G. O. Obigbesan, “Investigations on Nigerian Root and Tuber Crops: Effect of Potassium on Starch Yields, HCN, Content and Nutrient Uptake of Cassava (Manihot esculenta),” Journal of Agricultural Science, Vol. 89, No. 1, 1977, pp. 29-34. doi:10.1017/S0021859600027167

[85]   B. M. Kumar, P. G. Nair and K. R. Lakshmi, “Inter-Relationships of Potassium, Calcium and Magnesium of Cassava in an Ultisol,” Journal of Root Crops, Vol. 17, 1991, pp. 77-82.

[86]   K. C. M. Thampatti and P. Padmaja, “Effect of Urea- Neem Cake Blend on N and K Nutrition of Cassava,” Journal of Root Crops, Vol. 21, 1995, pp. 39-42.

[87]   D. Pellet and M. A. El-Sharkawy,“Cassava Varietal Response to Fertilization: Growth Dynamic and Implications for Cropping Sustainability,” Experimental Agriculture, Vol. 33, 1997, pp. 353-365. doi:10.1017/S0014479797003013

[88]   E. J. Burke, S. J. Brown and N. Christidis, “Modeling the Recent Evolution of Global Drought and Projections for the Twenty-first Century with the Hadley Centre Climate Model,” Journal of Hydrometeorology, Vol. 7, No. 5, 2006, pp. 1113-1125. doi:10.1175/JHM544.1

[89]   J. Gornall, et al., “Implications of Climate Change for Agricultural Productivity in The Early Twenty-first Century,” Philosophical Transactions of the Royal Society B-Biological Sciences, Vol. 365, 2010, pp. 2973-2989. doi:10.1098/rstb.2010.0158

[90]   K. Strzepek and B. Boehlert, “Competition for Water for the Food System,” Philosophical Transactions of the Royal Society B-Biological Sciences, Vol. 365, 2010, pp. 2927-2940. doi:10.1098/rstb.2010.0152

[91]   A. Sasson, “Feeding Tomorrow’s World,” United Nations Educational, Scientific and Cultural Organization (UNESCO)/CTA, Paris, 1990.

[92]   C. Rosenzweig and M. L. Parry, “Potential Impact of Climate Change on World Food Supply,” Nature, Vol. 367, No. 13, 1994, pp. 133-138. doi:10.1038/367133a0

[93]   M. L. Parry, C. Rosenzweig, A. Iglesias, M. Livermore and G. Fischer, “Effects of Climate Change on Global Food Production under SRES Emissions and Socioeconomic Scenarios,” Global Environmental Change, Vol. 14, No. 1, 2004, pp. 53-67. doi:10.1016/j.gloenvcha.2003.10.008

[94]   S. Romanoff and J. Lynam, “Cassava and African Food Security: Some Ethnographic Examples,” Ecology of Food Nutrition, Vol. 27, 1992, pp. 29-41. doi:10.1080/03670244.1992.9991223

[95]   W. Kamukondiwa, “Alternative Food Crops to Adapt to PotentialClimatic Change in Southern Africa,” Climate Research, Vol. 6, 1996, pp. 153-155. doi:10.3354/cr006153

[96]   FAO, “Adaptation to Climate Change in Agriculture, Forestry and Fisheries: Perspective, Framework and Priorities,” FAO Inter-departmental Working Group on Climate Change, Food and Agriculture Organization of the United Nations (FAO), Rome, 2007. http://www.fao.org/climatechange/en/

[97]   S. M. de Tafur, M. A. El-Sharkawy and F. Calle, “Photosynthesis and Yield Performance of Cassava in Seasonally Dry and Semiarid Environments,” Photosynthetica, Vol. 33, No. 2, 1997, pp. 249-257. doi:10.1023/A:1022116414969

[98]   CNPMF/EPAGRI/CIAT, “Project fortheDevelopment of CassavaGermplasmforDrierTropicsand Subtropical Agroecosystems:AnnualReport1991-1992, Work Plan 1992- 1993,” Centro Nacional de Pesquisa de Mandioca e Fruticultura Tropical (CNPMF), Empresa de Pesquisa Agropecuaria e Difus?o de Tecnologia de Santa Catarina (EPAGRI), and Centro Internacional de Agricultura Tropical (CIAT),Cruz das Almas, Brazil, 1991-1992, pp. 51.

[99]   W. M. G.Fukuda, M. Ender and C. Iglesias,“Project for the Development of Cassava Germplasm for Drier Tropics and Subtropical Agro-ecosystems: Annual Report 1992-1993, Work Plan 1993-1994,” CNPMF, EPAGRI, CIAT, Cruz das Almas, Brazil, 1992-1993, p. 55.

[100]   W. M. G. Fukuda and N. Saad, “Participatory Research in Cassava Breeding with Farmers in Northeastern Brazil: Annual Report, May 2001,” EMBRAPA/CNPMF, Brazil, and PRGA Program, CIAT, Colombia, 2001, p. 39.

[101]   N. Saad, N. Lilja and W. M. G. Fukuda, “Participatory Cassava Breeding in Northeast Brazil: Who Adopts and Why? Working Document No. 24,” PRGA/FUTURE HARVEST/CGIAR. CIAT, Cali, Colombia, 2005, p. 28.

[102]   S. P. Long, E. A. Ainsworth, A. D. B. Leakey, J. N?sberger and D. R. Ort, “Food for Thought: Lower- than-Expected Crop Yield Stimulations with Rising CO2 Concentrations,” Science, Vol. 312, No. 5782, 2006, pp. 1918- 1921. doi:10.1126/science.1114722

[103]   M. Erbs, R. Manderscheid and H-J. Weigel, “A Combined Rain Shelter and Free-Air CO2 Enrichment System to Study Climate Change Impacts on Plants in the Field,” Methods in Ecology and Evolution, Vol. 3, No. 1, 2012, pp. 81-88. doi:10.1111/j.2041-210X.2011.00143.x

[104]   B. A. Kimball, “Lessons from FACE: CO2 Effects and Interactions with Water, Nitrogen and Temperature,” In: D. Hillel and C. Rosenzweig, Eds., Handbook of Climate Change and Agroecosystems: Impacts, Adaptation, and Mitigation, Imperial College Press, London, 2011, pp. 87-107.

[105]   T. L. Setter and M. A. Fregene, “Recent Advances in Molecular Breeding of Cassava For Improved Drought Stress Tolerance,” In: M. A. Jenks, P. M. Hasegawa and S. M. Jain, Eds., Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops, Springer, 2007, pp. 701-7011. doi:10.1007/978-1-4020-5578-2_28

[106]   P. Zhang, et al., “Senescence-inducible Expression of Isopentenyl Transferase Extends Leaf Life, Increases Drought Stress Resistance and Alters Cytokinin Metabolism in Cassava,” Journal of Integrative Plant Biology (JIPB), Vol. 52, No. 7, 2010, pp. 653-669. http://www.jipb.net/1291369783750000.pdf

[107]   N.Taylor, P. Chavarriaga, K. Raemakers, D. Siritunga and P. Zhang, “ Development and Application of Transgenic Technologies in Cassava,” Plant Molecular Biology, Vol. 56, No. 4, 2004, pp. 671-688. doi:10.1007/s11103-004-4872-x

[108]   M. A. El-Sharkawy, “Utility of Basic Research in Plant/Crop Physiology in Relation to Crop Improvement: a Review and a Personal Account,” Brazilian Journal of Plant Physiology, Vol. 18, No. 4, 2006, pp. 419-446. doi:10.1590/S1677-04202006000400001

[109]   D. J. Connor, R. S. Loomis and K. G. Cassman, “Crop Ecology: Productivity and Management in Agricultural Systems,” 2nd Edition, Cambridge University Press, Cambridge, 2011. doi:10.1017/CBO9780511974199

 
 
Top