On the Coupled of NBEM and FEM for an Anisotropic Quasilinear Problem in Elongated Domains

Show more

References

[1] K. Feng, “Finite Element Method and Natural Boundary Reduction,” Proceedings of the International Congress of Mathematicians, Warsaw, 1983, pp. 1439-1453.

[2] D. H. Yu, “Natural Boundary Integral Method and Its Applications,” Science Press & Kluwer Academic Publishers, Amsterdam, 2002.

[3] H. D. Han, Z. Y. Huang and D. S. Yin, “Exact Artificial Boundary Conditions for Quasilinear Elliptic Equations in Unbounded Domains,” Communications in Mathematical Science, Vol. 6, No. 1, 2008, pp. 71-83.

[4] H. D. Han and X. N. Wu, “The Artificial Boundary Method—Numerical Solutions of Partial Differential Equations on Unbounded Domains,” in Chinese, Tsinghua University Press, Beijing, 2010.

[5] M. J. Grote and J. B. Keller, “On Non-Reflecting Boundary Conditions,” Journal of Computational Physics, Vol. 122, No. 2, 1995, pp. 231-243.
doi:10.1006/jcph.1995.1210

[6] M. J. Grote and J. B. Keller, “Exact non-Reflecting Boundary Conditions, Journal of Computational Physics, Vol. 82, No. 1, 1989, pp. 172-192.
doi:10.1016/0021-9991(89)90041-7

[7] Q. K. Du and M. X. Tang, “Exact and Approximate Artificial Boundary Conditions for the Hyperbolic Problems in Unbounded Domains,” Applied Mathematics and Computation, Vol. 169, No. 1, 2005, pp. 544-562.
doi:10.1016/j.amc.2004.09.074

[8] G. N. Gatica and G. C. Hsiao, “On the Coupled BEM and FEM for a Nonlinear Exterior Dirichlet Problem in R2,” Numerische Mathematik, Vol. 61, No. 1, 1992, pp. 171- 214. doi:10.1007/BF01385504

[9] Z. P. Wu, T. Kang and D. H. Yu, “On the Coupled NBEM and FEM for a Class of Nonlinear Exterior Dirichlet Problem in R2,” Science in China Series A, Mathematics, Vol. 47, No. 1, 2004, pp. 181-189.

[10] D. J. Liu and D. H. Yu, “A FEM-BEM Formulation for an Exterior Quasilinear Elliptic Problem in the Plane,” Journal of Computational Mathematics, Vol. 26, No. 3, 2008, pp. 378-389.

[11] S. Meddahi, M. Gonzalez and P. Perez, “On a FEM-BEM Formulation for an Exterior Quasilinear Problem in the Plane,” SIAM Journal on Numerical Analysis, Vol. 37, No. 6, 2000, pp. 1820-1837.
doi:10.1137/S0036142998335364

[12] I. Hlavacek and M. Krzek, “A note on the Neumann Problem for a Quasilinear Elliptic Problem of a Non- monotone Type,” Journal of Mathematical Analysis and Application, Vol. 211, No. 1, 1997, pp. 365-369.
doi:10.1006/jmaa.1997.5447

[13] G. Ben-Porat and D. Givoli, Solution of Unbounded Domain Problems Using Elliptic Artificial Boundaries,” Communications in Numerical Methods in Engineering, Vol. 11, No. 9, 1995, pp. 735-741.
doi:10.1002/cnm.1640110904

[14] D. H. Yu and Z. P. Jia, “Natural Integral Operator on Elliptic Boundary and the Coupling Method for an Ani- sotropic Problem,” in Chinese, Mathematic Numerica Sinica, Vol. 24, No. 3, 2002, pp. 375-384.

[15] J. M. Wu and D. H. Yu, “The Natural Boundary Element Method for Exterior Elliptic Problem,” in Chinese, Mathematic Numerica Sinica, Vol. 22, 2000, pp. 355-368.

[16] D. B. Ingham and M. A. Kelmanson, “Boundary Integral Equation Analysis of Singular, Potential, and Biharmonic Problems, Lecture Notes in Engineer,” Springer Verlag, Berlin, 1984.

[17] G. N. Gatica and G. C. Hsiao, “Boundary-Field Equation Methods for a Class of Nonlinear Problems, Pitman Research Notes in Mathematics Series 331,” Longman, Harlow, 1995.

[18] I. Hlavacek, M. Krlzek and J. Maly, “On Galerkin Approximations of a Quasi-Linear Nonpotential Elliptic Problem of a Nonmonotone Type,” Journal of Mathematical Analysis and Application, Vol. 184, No. 1, 1994, pp. 168-189. doi:10.1006/jmaa.1994.1192

[19] J. Xu, “Theory of Multilevel Methods,” Ph.D. Thesis, Cornell University, Ithaca, 1989.

[20] C. Chen and J. Zhou, “Boundary Element Methods,” Academic Press, London, 1992.