The Appearance of Noise Terms in Modified Adomian Decomposition Method for Quadratic Integral Equations

Show more

References

[1] J. Appell, “On the Solvability of Nonlinear Non-Compact Problems in Function Spaces with Applications to Integral and Differential Equations,” Bollettino della Unione Matematica Italiana, Vol. 6, No. 1B, 1982, pp. 1161-1177.

[2] J. Banas and K. Goebel, “Measures of Non-Compactness in Banach Spaces,” Dekker, New York, 1980.

[3] L. W. Busbridge, “The Mathematics of Radiative Transfer,” Cambridge University Press, Cambridge, 1960.

[4] J. Banas, J. Rocha Mortin and K. Sadarangani, “On the Solution of a Quadratic Integral Equation of Hammerstein Type,” Mathematical and Computer Modelling, Vol. 43, No. 1-2, 2006, pp. 97-104. doi:10.1016/j.mcm.2005.04.017

[5] W. G. El-Sayed and B. Rzepka, “Non Decreasing Solutions of a Quadratic Integral Equations of Uryshon Type,” Computers & Mathematics with Applications, Vol. 51, No. 6-7, 2006, pp. 1065-1074. doi:10.1016/j.camwa.2005.08.033

[6] A. M. A. El-Sayed and H. H. G. Hashem, “Solvability of Nonlinear Hammerstein Quadratic Integral Equations,” Journal of Nonlinear Sciences and Its Applications, Vol. 2, No. 3, 2009, pp. 152-160.

[7] I. K. Argyros, “Quadratic Equation and Applications to Chandrasckar’s and Related Equations,” Bulletin of the Australian Mathematical Society, Vol. 32, No. 2, 1985, pp. 275-292. doi:10.1017/S0004972700009953

[8] J. Caballero, B. Lopez and K. Sadaramgani, “Existence of Non Decreasing and Continuous Solutions for a Nonlinear Integral Equation with Supremum in the Kernel,” Zeitschrift für Analysis und ihre Anwendungen, Vol. 26, No. 2, 2007, pp. 195-205. doi:10.4171/ZAA/1318

[9] M. A. Darwish, “On Solvability of Some Quadratic Functional Integral Equations in Banach Algebra,” Communications in Applied Analysis, Vol. 11, 2007, pp. 441-450.

[10] A. M. El-Sayed, H. G. Hashem and E. A. Ziada, “Picard and Adomian Methods for Quadratic Integral Equation,” Computational & Applied Mathematics, Vol. 29, No. 3, 2010, pp. 447-463. doi:10.1590/S1807-03022010000300007

[11] G. Adomian, R. C. Rach and R. E. Meyers, “An Efficient Methodology for Physical Sciences,” Kybernetes, Vol. 20, No. 7, 1991, pp. 24-34. doi:10.1108/eb005909

[12] G. Adomian, “A Review of Decomposition Method and Some Recent Result for Nonlinear Equations,” Mathematical and Computer Modelling, Vol. 13, No. 7, 1992, pp. 17-43. doi:10.1016/0895-7177(90)90125-7

[13] G. Adomian, “Solving Frontier Problems of Physics: The Decomposition Method,” Springer, Berlin, 1994.

[14] G. Adomian, “Nonlinear Stochastic Systems: Theory and Applications to Physics,” Springer, Berlin, 1989.

[15] A. Wazwaz, “A Reliable Modification of Adomian Decomposition Method,” Applied Mathematics and Computation, Vol. 92, No. 1,1998, pp. 1-7. doi:10.1016/S0096-3003(97)10037-6

[16] G. Adomian and R. Rach, “Noise Terms in Decomposition Series Solution,” Computers & Mathematics with Applications, Vol. 24, No. 11, 1992, pp. 61-64. doi:10.1016/0898-1221(92)90031-C

[17] A. Wazwaz, “Neessary Conditions for the Appearance of Noise Terms in De-composition Solution Series,” Applied Mathematics and Computation, Vol. 81, No. 2-3, 1997, pp. 265-274.
doi:10.1016/S0096-3003(95)00327-4

[18] A. Wazwaz, “The Existence of Noise Terms for Systems of Inhomogeneous Differential and Integral Equations,” Applied Mathematics and Computation, Vol. 146, No. 1, 2003, pp. 81-92. doi:10.1016/S0096-3003(02)00527-1

[19] A. Wazwaz and S. M. El-Syed, “A New Modification of the Adomian Decomposition Method for Linear and Non- linear Operators,” Applied Mathematics and Computation, Vol. 122, No. 3, 2001, pp. 393-405.
doi:10.1016/S0096-3003(00)00060-6

[20] J. Banas and A. Martinon, “Monotonic Solutions of a Quadratic Integral Equations of Volterra Type,” Computers & Mathematics with Applications, Vol. 47, No. 2-3, 2004, pp. 271-279. doi:10.1016/S0898-1221(04)90024-7