JMP  Vol.3 No.6 , June 2012
Zero Sound Propagation in Femto-Scale Quantum Liquids
Abstract: Charge equilibration has been recognized as a dominant process at the early stage of low-energy heavy-ion reactions. The production of exotic nuclei is suppressed under the appearance of charge equilibration, in which the proton-neutron ratios of the final reaction products are inevitably averaged. Therefore charge equilibration plays one of the most crucial roles in the synthesis of chemical elements. Focusing on how and when the charge equilibration takes place, zero sound propagation in femto-scale quantum liquids is explained.
Cite this paper: Y. Iwata, "Zero Sound Propagation in Femto-Scale Quantum Liquids," Journal of Modern Physics, Vol. 3 No. 6, 2012, pp. 476-482. doi: 10.4236/jmp.2012.36064.

[1]   H. Freiesleben and J. V. Kratz, “N/Z-Equilibration and Nucleon Exchange in Dissipative Heavy-Ion Collisions,” Physics Reports, Vol. 106, No. 1-2, 1984, pp. 1-120. doi:10.1016/0370-1573(84)90092-9

[2]   D. L. Hill and J. A. Wheeler, “Nuclear Constitution and the Interpretation of Fission Phenomena,” Physical Re- view, Vol. 89, No. 5, 1953, pp. 1102-1145. doi:10.1103/PhysRev.89.1102

[3]   P. Bonche and N. Ng?, “Time-Dependent Hartree-Fock Description of Charge Equilibration in Heavy-Ion Collisions,” Physics Letters, Vol. 105, No. 1, 1981, pp. 17-21.

[4]   C. Simenel, Ph. Chomaz and G. de France, “Quantum Calculation of the Dipole Excitation in Fusion Reactions,” Physical Review Letters, Vol. 86, No. 14, 2001, pp. 2971-2974.

[5]   C. Simenel, Ph. Chomaz and G. de France, “Fusion Process Studied with Preequilibrium Giant Dipole Resonance in Time Dependent Hartree-Fock Theory,” Physical Review C, Vol. 76, 2007, Article ID: 024609. doi:10.1103/PhysRevC.76.024609

[6]   Y. Iwata, T. Otsuka, J. A. Maruhn and N. Itagaki, “Suppression of Charge Equilibration Leading to the Synthesis of Exotic Nuclei,” Physical Review Letters, Vol. 104, No. 25, 2010, Article ID: 252501. doi:10.1103/PhysRevLett.104.252501

[7]   A. A. Abrikosov and I. M. Khalatnikov, “The Theory of a Fermi Liquid (the Properties of Liquid 3He at Low Temperatures),” Reports on Progress in Physics, Vol. 22, 1959, pp. 329-367. doi:10.1088/0034-4885/22/1/310

[8]   J. Wilks, “The Properties of Liquid and Solid Heilium,” Oxford University Press, Oxford, 1967.

[9]   A. L. Fetter and J. D. Walecka, “Quantum Theory of Many-Particle Systems,” Dover-Publications, Mineola, 2003.

[10]   L. D. Landau, The theory of a Fermi liquid, € Zh. Eksp. Teor. Fiz., Vol. 30, 1956, 1058 [Soviet Phys. JETP Vol. 3, 1957, 920].

[11]   €Oscillations in a Fermi liquid, € Zh. Eksp. Teor. Fiz., Vol. 32, 1957, 59 [Soviet Phys. JETP Vol. 5, 1959, 101].

[12]   A. J. Leggett, “A Theoretical Description of the New Phases of Liquid 3He,” Reviews of Modern Physics, Vol. 47, No. 2, 1975, pp. 331-414.

[13]   W. R. Abel, A. C. Anderson and J. C. Wheatley, “Propagation of Zero Sound in Liquid He3 at Low Temperatures,” Physical Review Letters, Vol. 17, No. 2, 1966, pp. 74-78. doi:10.1103/PhysRevLett.17.74

[14]   P. Ring and P. Schuck, “The Nuclear Many-Body Problem,” Springer-Verlag, New York, 1980.

[15]   W. D. Myers and W. J. Swiatecki, “Average Nuclear Properties,” Annals of Physics, Vol. 55, No. 3, 1969, pp. 395-505.

[16]   W. D. Myers, “Droplet Model Isotope Shifts and the Neutron Skin,” Physics Letters, Vol. 30, No. 7, 1969, pp. 451-454.

[17]   M. T. Collins and J. J. Griffin, “Mean Free Path of Nucleons in a Fermi Gas at Finite Temperature,” Nuclear Physics A, Vol. 348, No. 1, 1980, pp. 63-74. doi:10.1016/0375-9474(80)90545-X

[18]   Y. Iwata, T. Otsuka, J. A. Maruhn and N.Itagaki, “Geometric Classification of Nucleon Transfer at Moderate Low-Energies,” Nuclear Physics A, Vol. 836, No. 1-2, 2010, pp. 108-118. doi:10.1016/j.nuclphysa.2010.01.242

[19]   H. A. Bethe and F. Bacher, “Nuclear Physics I. Stationary States of Nuclei,” Reviews of Modern Physics, Vol. 36, No. 2, 1936, pp. 82-229.

[20]   C. F. von Weizs?cker, “Zur Theorie der Kernmassen,” Zeitschrift Für Physik A: Hadrons and Nuclei, Vol. 96, No. 7-8, 1935, pp. 431-458. doi:10.1007/BF01337700

[21]   W. Greiner and J. A. Maruhn, “Nuclear Models,” Springer-Verlag, Berlin, 1996. doi:10.1007/978-3-642-60970-1