Solving Systems of Transcendental Equations Involving the Heun Functions

Show more

References

[1] F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark, “NIST Handbook of Mathematical Functions,” Cam- bridge University Press, Cambridge, 2010.

[2] S. Y. Slavyanov and W. Lay, “Special Functions, A Unified Theory Based on Singularities,” Oxford Mathematical Monographs, Oxford, 2000.

[3] K. Heun, “Zur Theorie der Riemann'schen Functionen zweiter Ordnung mit vier Verzweigungspunkten,” Mathematische Annalen, Vol. 33, No. 2, 1889, pp. 161-179.
doi:10.1007/BF01443849

[4] A. Decarreau, M. C. Dumont-Lepage, P. Maroni, A. Robert and A. Roneaux, “Formes Canoniques des Equations Confluentes de l'equation de Heun,” Annales de la Societe Scientifique de Bruxelles, Vol. 92, 1978, pp. 53.

[5] A. Decarreau, P. Maroni and A. Robert, Heun’s Differential Equations, A. Roneaux, Eds., Oxford University Press, Oxford, 1995, p. 354.

[6] M. Hortacsu, “Heun Functions and Their Uses in Physics,” 2011. http://arxiv.org/abs/1101.0471v1

[7] P. P. Fiziev, “Novel Relations and New Properties of Con- fluent Heun’s Functions and Their Derivatives of Arbitrary Order,” Journal of Physics A: Mathematical and Theoretical, Vol. 43, No. 3, 2010, Article ID: 035203.
doi:10.1088/1751-8113/43/3/035203

[8] D. Staicova and P. Fiziev, “The Spectrum of Electro- magnetic Jets from Kerr Black Holes and Naked Singularities in the Teukolsky Perturbation Theory,” Astrophysics and Space Science, Vol. 332, No. 2, 2011, pp. 385-401. doi:10.1007/s10509-010-0520-x

[9] P. Fiziev and D. Staicova, “Application of the Confluent Heun Functions for Finding the QNMs of Nonrotating Black Hole,” Physical Review D, Vol. 84, No. 12, 2011, Article ID: 127502. doi:10.1103/PhysRevD.84.127502

[10] D. Staicova and P. Fiziev, “New Results for Electromagnetic Quasinormal Modes of Black Holes,” 2011
arXiv:1112.0310v2

[11] S. Chandrasekhar and S. L. Detweiler, “The Quasi-Nor- mal Modes of the Schwarzschild Black Hole,” Proceedings of the Royal Society A, Vol. 344, No. 1639, 1975, pp. 441-452. doi:10.1098/rspa.1975.0112

[12] S. Detweiler, “Black Holes and Gravitational Waves. III- The Resonant Frequencies of Rotating Holes,” Astro- physical Journal, Vol. 239, 1980, pp. 292-295.
doi:10.1086/158109

[13] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, “Numerical Recipes,” Cambridge University Press, Cambridge, 1992.

[14] G. E. Forsythe, M. A. Malcolm and C. B. Moler, “Computer Methods for Mathematical Computations,” Prentice Hall, Upper Saddle River, 1977.

[15] C. G. Broyden, “A Class of Methods for Solving Nonlinear Simultaneous Equations Math,” Mathematics of Computation, Vol. 19, 1965, pp. 577-593.

[16] P. Fiziev and D. Staicova, “Two-Dimensional Generali- zation of the Muller Root-Finding Algorithm and Its Applications,” 2011. http://arxiv.org/pdf/1005.5375.pdf

[17] D. E. Müller, “A Method for Solving Algebraic Equations Using an Automatic Computer,” Mathematical Tables and Other Aids to Computation, Vol. 10, No. 5, 1956, pp. 208-215.

[18] P. P. Fiziev, “Exact Solutions of Regge-Wheeler Equation and Quasi-Normal Modes of Compact Objects,” Classical and Quantum Gravity, Vol. 23, No. 7, 2006, pp. 2447-2468. doi:10.1088/0264-9381/23/7/015

[19] N. Andersson, “A Numerically Accurate Investigation of Black-Hole Normal Modes,” Proceedings: Mathematics and Physical Sciences, Vol. 439, No. 1905, 1905, pp. 47- 58.

[20] E. Berti, V. Cardoso and C. M. Will, “On Gravitational-Wave Spectroscopy of Massive Black Holes with the Space Interferometer LISA,” Physical Review D, Vol. 73, No. 6, 2006, Article ID: 064030.
doi:10.1103/PhysRevD.73.064030

[21] S. Chandrasekhar, “The Mathematical Theory of Black Holes,” Oxford University Press, Oxford, 1983.

[22] V. Ferrari and L. Gualtieri, “Quasi-Normal Modes and Gravitational Wave Astronomy,” General Relativity and Gravitation, Vol. 40, No. 5, 2008, pp. 945-970.
doi:10.1007/s10714-007-0585-1

[23] R. A. Konoplya and A. Zhidenko, “Quasinormal Modes of Black Holes: From Astrophysics to String Theory,” Reviews of Modern Physics, Vol. 83, No. 3, 2011, pp. 793-836. doi:10.1103/RevModPhys.83.793

[24] P. P. Fiziev, “Classes of Exact Solutions to the Teukolsky Master Equation,” Classical and Quantum Gravity, Vol. 27, No. 13, 2010, Article ID: 135001.
doi:10.1088/0264-9381/27/13/135001

[25] E. W. Leaver, “An Analytic Representation for the Quasi-Normal Modes of Kerr Black Holes,” Proceedings of the Royal Society A, Vol. 402, No. 1823, 1985, pp. 285-298.
doi:10.1098/rspa.1985.0119

[26] E. Berti, V. Cardoso and A. O. Starinets, “Quasinormal Modes of Black Holes and Black Branes,” Classical and Quantum Gravity, Vol. 26, No. 16, 2000, Article ID: 163001. doi:10.1088/0264-9381/26/16/163001

[27] E. Berti, “Black Hole Quasinormal Modes: Hints of Quantum Gravity?” 2004.
http://arxiv.org/pdf/gr-qc/0411025.pdf

[28] P. P. Fiziev, “Teukolsky-Starobinsky Identities: A Novel Derivation and Generalizations,” 2009.
http://arxiv.org/pdf/0906.5108.pdf

[29] M. Cadoni and P. Pani, “Holography of Charged Dila-Tonic Black Branes at Finite Temperature,” Journal of High Energy Physics, 2011.
http://arxiv.org/pdf/1102.3820.pdf

[30] P. Pani, “Applications of Perturbation Theory in Black Hole Physics,” Ph.D. Thesis, Universita' degli Studi di Cagliari, Cagliari, 2011.